Advertisement

Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater

  • Saraswati Saini
  • Jaskaran Kaur Gill
  • Jagdeep Kaur
  • Hridoy Ranjan Saikia
  • Navdeep Singh
  • Inderpreet Kaur
  • Jatinder Kaur Katnoria
Chapter

Abstract

Water is an essential element of all the life forms and is a universal solvent that may contain miscellany of toxic as well as non toxic substances. Due to increasing population and urbanization, there has been substantially a great burden on the water ecosystem. Apart from these, water ecosystems are also exposed to significant quantity of contaminants released from agricultural and industrial practices which consequently cause serious health problems. Presence of contaminants in ground water along with surface water is of serious concern. Heavy metals, considered as non-degradable pollutants, are responsible to induce various types of diseases in human beings on consumption of contaminated water. Many techniques such as membrane filtration, reverse osmosis, chemical precipitation, physical methods (boiling and sand bed filtration), carbon/activated carbon adsorption, phytoremediation and biosorption have been extensively used for treatment of wastewater. Biosoption, among various types of treatments, is recognized as an environmental friendly tool to remediate the wastewater. The present review focuses on removal of heavy metals using different biosorbents.

Keywords

Heavy metals Remediation Biosorbents Adsorption process Environment and health 

References

  1. Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3, 74–102.Google Scholar
  2. Acar, F. N., & Eren, Z. (2006). Removal of Cu (II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions. Journal of Hazardous Materials B, 137, 909–914.CrossRefGoogle Scholar
  3. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71–79.Google Scholar
  4. Akhtar, M., Iqbal, S., Kausar, A., Bhanger, M. I., & Shaheen, M. A. (2010). An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids and Surfaces B: Biointerfaces, 75, 149–155.CrossRefGoogle Scholar
  5. Al Rmalli, S. W., Gahmani, A. A., Abuein, M. M., & Gleza, A. A. (2008). Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). Journal of Hazardous Materials, 152, 955–959.CrossRefGoogle Scholar
  6. Ali, E. N., Alfarra, S. R., Yusoff, M. M., & Rahman, M. L. (2015). Environmentally friendly biosorbent from Moringa oleifera leaves for water treatment. International Journal of Environmental Svcience and Development, 6, 165–169.CrossRefGoogle Scholar
  7. Asberry, H. B., Kuo, C., Gung, C., Conte, E. D., & Suen, S. (2014). Characterization of water bamboo husk biosorbents and their application in heavy metals ion trapping. Microchemical Journal, 113, 59–63.CrossRefGoogle Scholar
  8. Avery, S. V., & Tobin, J. M. (1992). Mechanism of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Applied Environmental Microbiology, 58, 3883–3889.Google Scholar
  9. Baraket, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.CrossRefGoogle Scholar
  10. Bhattacharyya, K. G., Sarma, J., & Sarma, A. (2009). Azadirachta indica leaf powder as a biosorbent for Ni (II) in aqueous medium. Journal of Hazardous Materials, 165, 271–278.CrossRefGoogle Scholar
  11. Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn (II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42, 547–553.CrossRefGoogle Scholar
  12. Bulut, Y., & Baysal, Z. (2006). Removal of Pb (II) from wastewater using bran. Journal of Environmental Management, 78, 107–113.CrossRefGoogle Scholar
  13. Can, C., & Jianlong, W. (2008). Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM – EDX and XAFS. Applied Microbiology and Biotechnology, 79, 293–299.CrossRefGoogle Scholar
  14. Cardoso, V. A., de Souza, A. G., Sartoratto, P. P. C., & Nunes, L. M. (2004). The ionic exchange process of cobalt, nickel and copper (II) in alkaline and acid – layered titanates. Colloids and Surface A: Physicochemical and Engineering Aspects, 248, 145–149.CrossRefGoogle Scholar
  15. Chandra, S., Chauhan, L. K. S., Murthy, R. C., Saxena, P. N., Pande, P. N., & Gupta, S. K. (2005). Comparative biomonitoring of leachates from hazardous solid waste of two industries using Allium test. Science of the Total Environment, 347, 46–52.CrossRefGoogle Scholar
  16. Chen, C., & Wang, J. (2008). Removal of Pb+2, Ag+, Cs+ and Sr+2 from aqueous solution by brewery’s waste biomass. Journal of Hazardous Materials, 151, 65–70.CrossRefGoogle Scholar
  17. Chen, Y., Wang, Z., & Huang, S. (2004). Assessment of the contamination and Genotoxicity of soil irrigated with wastewater. Plant and Soil, 56, 189–196.CrossRefGoogle Scholar
  18. Chen, H., Dai, G., Zhao, J., Zhong, A., Wu, J., & Yan, H. (2010). Removal of copper (II) ions by a biosorbent – Cinnamomum camphora leaves powder. Journal of Hazardous Materials, 177, 228–236.CrossRefGoogle Scholar
  19. Council Directive: Pollution caused by certain dangerous substances discharged into the aquatic environment of the Community, 1976. (76/464/EEC).Google Scholar
  20. Dai, S., Wei, D., Zhou, D., Jia, C., Wang, Y., & Liu, W. (2008). Removing cadmium from electroplating wastewater by waste Saccharomyces cerevisiae. Transactions of Nonferrous Metals Society of China, 18, 1008–1013.CrossRefGoogle Scholar
  21. Dar, B. A., Taher, A., Wani, A., & Farooqui, M. (2013). Isotherms and thermodynamic studies on adsorption of copper on powder of shed pods of Acacia nilotica. Journal of Environmental Chemistry and Ecotoxicology, 5, 17–20.Google Scholar
  22. Dhir, B., & Kumar, R. (2010). Adsorption of heavy metals by Salvinia biomass and agricultural residues. International Journal of Environmental Research, 4, 427–432.Google Scholar
  23. Dhir, B., Sharmila, P., Pardha Saradhi, P., & Nasim, S. A. (2009). Physiological and antioxidant responses of Salvinia natans exposed to chromium rich wastewater. Ecotoxicology and Environmental Safety, 72, 1790–1797.CrossRefGoogle Scholar
  24. El-Sayed, M. T. (2012). The use of Saccharomyces cerevisiae for removing cadmium (II) from aqueous waste solutions. African Journal of Microbiology Research, 6, 6900–6910.Google Scholar
  25. Farooq, U., Kosinzki, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresource Technology, 101, 5043–5053.CrossRefGoogle Scholar
  26. Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health, 13, 19–27.Google Scholar
  27. Ferraz, A. I., & Teixeira, J. A. (1999). The use of flocculating brewer’s yeast for Cr (III) and Pb (II) removal from residual wastewaters. Bioprocess Engineering, 21, 431–437.CrossRefGoogle Scholar
  28. Ferraz, A. I., Tavares, T., & Teixeira, J. A. (2004). Cr (III) removal and recovery from Saccharomyces cerevisiae. Chemical Engineering Journal, 105, 11–20.CrossRefGoogle Scholar
  29. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., & Serarols, J. (2006). Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50, 132–140.CrossRefGoogle Scholar
  30. Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46, 834–840.CrossRefGoogle Scholar
  31. Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609–643.CrossRefGoogle Scholar
  32. Gardea-Torresdey, J. I., Hernandez, A., Tiemann, K. J., Bibb, J., & Rodriguez, O. (1998). Adsorption of toxic metal ions from solution by inactivated cells of Larrea tridentate (Creosote Bush). Journal of Hazardous Substance Research, 1, 13–16.Google Scholar
  33. Garg, S. K. (2010). Ecology and environmental studies. New Delhi: Khanna Publishers.Google Scholar
  34. Garg, S. K., Garg, R., & Garg, R. (2006). Ecological and environmental studies. New Delhi: Khanna Publishers.Google Scholar
  35. Ghodbane, I., & Hamdaoui, O. (2008). Removal of mercury (II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. Journal of Hazardous Materials, 160, 301–309.CrossRefGoogle Scholar
  36. Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.CrossRefGoogle Scholar
  37. Gupta, V. K., & Ali, I. (2008). Removal of endosulfan and methoxychlor from water on carbon slurry. Environmental Science and Technology, 42, 766–770.CrossRefGoogle Scholar
  38. Gupta, V. K., & Rastogi. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163, 396–402.CrossRefGoogle Scholar
  39. Gupta, V. K., Pathania, D., Agarwal, S., & Sharma, S. (2013). Removal of Cr (IV) onto Ficus carica biosorbent from water. Environment Science and Pollution Research, 20, 2632–2644.CrossRefGoogle Scholar
  40. Hameed, B. H., & El-Khaiary, M. I. (2008). Equilibrium and kinetics mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 157, 344–351.CrossRefGoogle Scholar
  41. Hameed, B. H., Din, A. T. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo – Based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141, 819–825.CrossRefGoogle Scholar
  42. Hlihor, R. M., Diaconu, M., Fertu, D., Chelaru, C., Sandu, I., Tavares, T., & Gavrilescu, M. (2013). Bioremediation of Cr (VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. International Journal of Environmental Research, 7, 581–594.Google Scholar
  43. Holan, Z., & Volesky, B. (1995). Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Applied Biochemistry and Biotechnology, 53, 133–146.CrossRefGoogle Scholar
  44. Huang, C., Huang, C. P., & Morehart, A. L. (1990). The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Research, 24, 433–439.CrossRefGoogle Scholar
  45. Ibrahim, S. C., Hanafiah, M. A. K. M., & Yahya, M. Z. A. (2006). Removal of cadmium from aqueous solutions by adsorption onto sugarcane bagasse. American – Eurasian Journal of Agriculture and Environmental Science, 1, 179–184.Google Scholar
  46. Ileri, O., Cay, S., Uyanik, A., & Erduran, N. (2014). Removal of common heavy metals from aqueous solutions by waste Salvadora persica L. branches (Miswak). International Journal of Environmental Research, 8, 987–996.Google Scholar
  47. Jianlong, W. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37, 847–850.CrossRefGoogle Scholar
  48. Jorgetto, A. O., Silva, R. I. V., Saeki, M. J., Barbosa, R. C., Martines, M. A. U., Jorge, S. M. A., Silva, A. C. P., Schneider, J. F., & Castro, G. R. (2014). Cassava root husks powder as green adsorbent for the removal of Cu (II) from natural river water. Vérsila Biblioteca Digital, 288, 356–362.Google Scholar
  49. Kaewsarn, P., & Yu, Q. (2001). Cadmium (II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environmental Pollution, 112, 209–213.Google Scholar
  50. Kandah, M. I. (2004). Zinc and cadmium adsorption on low grade phosphate. Separation and Purification Technology, 35, 61–70.CrossRefGoogle Scholar
  51. Khan, M. A., Alemayehu, A., Duraisamy, R., & Berekete, A. K. (2015). Removal of lead ions from aqueous solution by bamboo activated carbon. International Journal of Water Research, 5, 33–46.Google Scholar
  52. Klaassen, E. D. (2001). (2001). Heavy metal and heavy metal antagonists. In J. G. Hardman, L. E. Limbird, & A. G. Gilman (Eds.), Goodmna and Gilman’s: The pharmacological basis of therapeutices (9th ed., pp. 1851–1875). New York: McGraw Hill.Google Scholar
  53. Kotrba, P. (2011). Microbial biosorption of metals-general introduction. In P. Kotrba, M. Mackova, & T. Macek (Eds.), Microbial biosorption of metals (pp. 1–6). Dordrecht: Springer.CrossRefGoogle Scholar
  54. Kumar, Y. P., King, P., & Prasad, V. S. R. K. (2006). Equilibrium and kinetic studies for the biosorption system of copper (II) ion from aqueous solution using Tectona grandis L.f. leaves powder. Journal of Hazardous Materials B, 137, 1211–1217.CrossRefGoogle Scholar
  55. Latinwo, G. K., Jimoda, L. A., Aggary, S. E., & Adeniran, J. A. (2015). Biosorption of some heavy metals from textile wastewater by green seaweed biomass. Universal Journal of Environmental Research and Technology, 5, 210–219.Google Scholar
  56. Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.CrossRefGoogle Scholar
  57. Liu, X., Ao, H., Xiong, X., Xiao, J., & Liu, J. (2012). Arsenic removal from water by iron-modified bamboo charcoal. Water, Air & Soil, 223, 1033–1044.CrossRefGoogle Scholar
  58. Lohani, M. B., Singh, A., Rupainwar, D. C., & Dhar, D. N. (2008). Studies on efficiency of guava (Psidium guajava) bark as biosorbent for removal of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 159, 626–629.CrossRefGoogle Scholar
  59. Mapolelo, M., & Torto, N. (2004). Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta, 64, 39–47.CrossRefGoogle Scholar
  60. Marques, P. A., Pinheiro, H. M., Teixeira, J. A., & Rosa, M. F. (1999). Removal efficiency of Cu (II), Cd (II) and Pb (II). By waste brewery biomass: pH and cation association effects. Desalination, 124, 137–144.CrossRefGoogle Scholar
  61. Marques, P. A. S. S., Rosa, M. F., & Pinheiro, H. M. (2000). pH effects on the remove of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 23, 135–141.CrossRefGoogle Scholar
  62. Mathur, N., & Bhatnagar, P. (2005). Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). Journal of Environmental Biology, 28, 123–126.Google Scholar
  63. Melckova, I., & Ruzovic, T. (2010). Biosorption of zinc from aqueous solution using algae and plant biomass. Nova Biotechnoligica, 10, 33–43.Google Scholar
  64. Metcalf, E. (2003). Wastewater engineering: Treatment, disposal and reuse. New York: McGraw-Hill.Google Scholar
  65. Mohammed, M. A., Shitu, A., Tadda, M. A., & Ngaura, M. (2014). Utilization of various agricultural waste materials in the treatment of industrial wastewater containing heavy metals: A review. International Research Journal of Environmental Sciences, 3, 62–71.Google Scholar
  66. Mohan, S., Gandhimathi, R., & Sreelakshmi, G. (2008). Isotherm studies for heavy metal adsorption on rice husk. Asian Journal of Water Environment and Pollution, 5, 71–78.Google Scholar
  67. Mondal, D. K., Nandi, B. K., & Purkait, M. K. (2013). Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 1, 891–898.CrossRefGoogle Scholar
  68. Mouchet, F., Gauthier, L., Mailhes, C., Jourdian, M. J., Ferrier, V., & Triffault, G. (2006). Biomonitoring of the Genotoxic potential of aqueous extracts of solids and bottom ash resulting from municipal solid waste incineration using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox R and Ames tests). Science of the Total Environment, 355, 232–246.CrossRefGoogle Scholar
  69. Muthusamy, P., Murugan, S., & Smitha, M. (2012). Removal of nickel ions from industrial waste water using maize cob. Journal of Biological Sciences, 1, 7–11.Google Scholar
  70. Ni, C., Yi, C., & Feng, Z. (2001). Studies of synthesis and adsorptive properties of chelating resin from thiourea and formaldehyde. Journal of Applied Polymer Science, 82, 3127–3132.CrossRefGoogle Scholar
  71. Ozer, A. (2006). Removal of Pb (II) ions from aqueous solutions by sulfuric acid treated wheat bran. Journal of Hazardous Materials B, 141, 753–761.CrossRefGoogle Scholar
  72. Ozer, A., & Ozer, D. (2003). Comparative study of biosorption of lead (II), nickel (II) and chromium (VI) ions onto S. cerevisiae: Determination of biosorption heats. Journal of Hazardous Materials B, 100, 219–229.CrossRefGoogle Scholar
  73. Ozer, A., & Pirinc, c. i. H. B. (2006). The adsorption of cadmium (II) ions on sulfuric acid treated wheat bran. Journal of Hazardous Materials B, 137, 849–855.CrossRefGoogle Scholar
  74. Ramalingam, S. J., Khan, T. H., Pugazhlenthi, M., & Thirumurugan, V. (2013). Removal of Pb (II) and Cd (II) ions from industrial wastewater using Calotropis procera roots. International Journal of Engineering Science Invention, 2, 1–6.Google Scholar
  75. Rao, L. N. (2013). Adsorption of lead and zinc from aqueous solution using Terminalia catappa L. as adsorbent. International Journal of Engineering Research and Science and Technology, 2, 65–76.Google Scholar
  76. Rao, K. S., Anand, S., & Venkateshwarlu, P. (2010). Cadmium removal from aqueous solutions using biosorbent Syzygium cumini leaf powder: Kinetic and equilibrium studies. Korean Journal of Chemical Engineering, 27, 1547–1554.CrossRefGoogle Scholar
  77. Reddy, B. R., Mirghaffari, N., & Gaballah, I. (1997). Removal and recycling of copper from aqueous solutions using treated Indian barks. Resources Conservation Recycling, 21, 227–245.CrossRefGoogle Scholar
  78. Salatnia, A., Madani, A., Bakhti, M. Z., Kertous, L., Mansouri, Y., & Yous, R. (2004). Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rinosus biomass. Minerals Engineering, 17, 903–911.CrossRefGoogle Scholar
  79. Samuel, O. B., Osuala, F. I., & Odeigah, G. C. (2010). Cytogenotoxicity evaluation of two industrial effluents using Allium cepa assay. African Journal of Environmental Science and Technology, 4, 21–27.Google Scholar
  80. Sarin, V., & Pant, K. K. (2006). Removal of chromium form industrial waste by using eucalyptus bark. Bioresources Technology, 97, 15–20.CrossRefGoogle Scholar
  81. Sharma, N., & Singh, J. (2008). Removal of Zn+2 ions from aqueous solution using rice (Oryza sativa) husk in sequential bed adsorption column. In Proceeding of Taal 2007: The 12th World Lake Conference (pp. 944–951).Google Scholar
  82. Sharmila, S., Amaraselvum, K., Rebecca, L. J., & Kowsalya, E. (2016). Biosorption of textile effluent using marine algae. International Journal of Pharmaceutical Sciences Review and Research, 39, 108–111.Google Scholar
  83. Sirilamduan, C., Umpuch, C., & Kaewsarn, P. (2011). Removal of copper from aqueous solutions by adsorption using modify Zalacca edulis peel modify. Songklanakarin Journal of Science and Technology, 33, 725–732.Google Scholar
  84. Singh, K. K., Talat, M., & Hasan, S. H. (2006). Removal of lead from agqueous solutions by agricultural waste maize bran. Bioresource Technology., 97, 2124–2130.CrossRefGoogle Scholar
  85. Slaiman, Q. J. M., Haweel, C. K., & Abdulmajeed, Y. R. (2010). Removal of heavy metal ions from aqueous solutions using biosorption onto bamboo. Iraqi Journal of Chemical and Petroleum Engineering, 11, 23–32.Google Scholar
  86. Soares, E. V. (2010). Flocculation in Saccharomyces cerevisiae: A review. Journal of Applied Microbiology., 110, 1–18.CrossRefGoogle Scholar
  87. Soares, E. V., Coninck, G. D., Duarte, F., & Soares, H. M. V. M. (2002). Use of Saccharomyces cerevisiae for Cu+2 removal from solution: The advantages of using a flocculent strain. Biotechnology Letters, 24, 663–666.CrossRefGoogle Scholar
  88. Subbaiah, M. V., Vijaya, Y., Kumar, N. S., Reddy, A. S., & Krishnaiah, A. (2009). Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies. Colloids and Surfaces B: Biointerfaces, 74, 260–265.CrossRefGoogle Scholar
  89. Suh, J. H., Yun, J. W., & Kim, D. S. (1999a). Cation (K+, Mg2+, Ca2+) exchange in Pb+2 accumulation by Saccharomyces cerevisiae. Process Biochemistry, 21, 383–387.Google Scholar
  90. Suh, J. H., Yun, J. W., & Kim, D. S. (1999b). Effects of pH on Pb+2 accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans. Bioprocess Engineering, 20, 471–474.Google Scholar
  91. Sun, G., & Shi, W. (1998). Sunflower stalks as adsorbents for removal of metal ions from wastewater. Industrial Engineering and Chemical Research, 37, 1324–1328.CrossRefGoogle Scholar
  92. Svecova, L., Spanelova, M., Kubal, M., & Guibal, E. (2006). Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry: Equilibrium studies. Separation and Purification Technology, 52, 142–153.CrossRefGoogle Scholar
  93. Szlag, D. C., & Wolf, N. J. (1999). Recent advances in ion exchange materials and processes for pollution prevention. Clean Products and Processes, 1, 117–131.Google Scholar
  94. Tsezos. (1999). Biosorption of metals. The experience accumulated and the outlook for technology development. Process Metallurgy, 9, 171–173.CrossRefGoogle Scholar
  95. UK Red List Substances: Environmental Protection (Prescribed Processes and Substances) Regulations, 1991 (SI 1991/472).Google Scholar
  96. USEPA (US Environmental Protection Agency). (1997). Exposure factors handbook–general factors. EPA/600/P-95/002Fa, vol. I. Office of Research and Development. National Center for Environmental Assessment. Washington, DC: US Environmental Protection Agency.Google Scholar
  97. Varma, G. V., & Misra, A. K. (2016). Equilibrium and kinetic studies on adsorption of copper on to carca papaya leaf powder. J Colloid Interface Sci, 7, 403–416.Google Scholar
  98. Vasanthy, M., Sangeetha, M., & Kalaiselvi, R. (2004). A comparative study on the chromium removal efficiency of flyash and commercial activated carbon. Journal of Industrial Pollution Control, 20, 37–44.Google Scholar
  99. Vieira, R. H. S. F., & Volesky, B. (2000). Biosorption: A solution to pollution. International Microbiology, 3, 17–24.Google Scholar
  100. Vilvanathan, S., & Shanthakumar, S. (2016). Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: Adsorption kinetics, equilibrium and thermodynamics study. Desalination and Water Treatment, 57, 3995–4007.CrossRefGoogle Scholar
  101. Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study. Journal of Hazardous Materials, 168, 376–382.CrossRefGoogle Scholar
  102. Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11, 235–250.CrossRefGoogle Scholar
  103. Volesky, B., May, H., & Holan, Z. R. (1993). Cadmium bosorption by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 41, 826–829.CrossRefGoogle Scholar
  104. Wang, L. (2012). Application of activated carbon derived from ‘waste’ bamboo culms for the adsorption of azo disperse dye: Kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management., 102, 79–87.CrossRefGoogle Scholar
  105. Wang, J. L., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advance, 24, 427–451.CrossRefGoogle Scholar
  106. Wang, Y., Wang, X., Wang, X., Liu, M., Yang, L., Wu, Z., Xia, S., & Zhao, J. (2012a). Adsorption of Pb (II) in aqueous solutions by bamboo charcoal modified with KMnO4 via microwave irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 1–8.CrossRefGoogle Scholar
  107. Wang, Y., Wang, X. J., Liu, M., Wang, X., Wu, Z., Yang, L. Z., Xia, S. Q., & Zhao, J. F. (2012b). Cr (VI) removal from water using cobalt – Coated bamboo charcoal prepared microwave heating. Industrial Crops and Products, 39, 81–88.CrossRefGoogle Scholar
  108. White, C., Sayer, J. E., & Gadd, G. M. (1997). Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 20, 503–516.CrossRefGoogle Scholar
  109. Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003a). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50, 23–28.CrossRefGoogle Scholar
  110. Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003b). Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochemistry, 39, 437–445.CrossRefGoogle Scholar
  111. Yang, L., & Chen, J. P. (2008). Biosorption of hexavalent chromium onto raw and chemical modification Sargassun sp. Bioresource Technology, 99, 297–307.CrossRefGoogle Scholar
  112. Zan, F., Huo, S., Xi, B., & Zhao, X. (2012). Biosorption of Cd+2 and Cu+2 on immobilized Saccharomyces cerevisiae. Frontier Environmental Science and Engineering, 6, 51–58.CrossRefGoogle Scholar
  113. Zheng, L., Dang, Z., Yi, X., & Zhang, H. (2010). Equilibrium and kinetic studies of adsorption of Cd (II) from aqueous solution using modified corn stalk. Journal of Hazardous Materials, 176, 650–656.CrossRefGoogle Scholar
  114. Zhu, B., Fan, T., & Zhang, D. (2008). Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials, 153, 300–308.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Saraswati Saini
    • 1
  • Jaskaran Kaur Gill
    • 1
  • Jagdeep Kaur
    • 1
  • Hridoy Ranjan Saikia
    • 1
  • Navdeep Singh
    • 1
  • Inderpreet Kaur
    • 2
  • Jatinder Kaur Katnoria
    • 1
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of Chemistry, Centre for advance StudiesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations