Oxidative Stress in Hypertension and Cardiovascular-Renal Remodeling: Focus on the Renin-Angiotensin-Aldosterone System

  • Giuseppe Maiolino
  • Verdiana Ravarotto
  • Lorenzo A. CalòEmail author


The last report of the World Health Organization highlights that ischaemic heart disease and stroke, which account for 15.2 millions of death in 2016 combined, are the two leading causes of mortality worldwide. Both diseases are strictly related to atherosclerosis and hypertension where oxidative stress and the renin-angiotensin-aldosterone system (RAAS) play a crucial role.


  1. 1.
    Montezano AC, Dulak-Lis M, Tsiropoulou S et al (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31:631–641. Scholar
  2. 2.
    Maiolino G, Azzolini M, Paolo Rossi G et al (2015) Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans. Free Radic Biol Med 88:51–58. Scholar
  3. 3.
    Sies H (1985) Oxidative stress. Academic, LondonGoogle Scholar
  4. 4.
    Lassègue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Integr Comp Physiol 285:R277–R297. Scholar
  5. 5.
    Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 8:1533–1548. Scholar
  6. 6.
    Cosentino F, Francia P, Camici GG et al (2008) Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28:622–628. Scholar
  7. 7.
    Cruzado MC, Risler NR, Miatello RM et al (2005) Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Am J Hypertens 18:81–87. Scholar
  8. 8.
    Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10:2047–2089. Scholar
  9. 9.
    Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM (2014) Angiotensin II and vascular injury. Curr Hypertens Rep 16:431. Scholar
  10. 10.
    Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13:122–128. Scholar
  11. 11.
    Hingtgen SD, Tian X, Yang J et al (2006) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26:180–191. Scholar
  12. 12.
    Li J-M, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484. Scholar
  13. 13.
    Grieve DJ, Byrne JA, Siva A et al (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826. Scholar
  14. 14.
    Johar S, Cave AC, Narayanapanicker A et al (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20:1546–1548. Scholar
  15. 15.
    Byrne JA, Grieve DJ, Bendall JK et al (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II–induced cardiac hypertrophy. Circ Res 93:802–805. Scholar
  16. 16.
    Maytin M, Siwik DA, Ito M et al (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171. Scholar
  17. 17.
    Higashi M, Shimokawa H, Hattori T et al (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775. Scholar
  18. 18.
    Doerries C, Grote K, Hilfiker-Kleiner D et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903. Scholar
  19. 19.
    Satoh M, Ogita H, Takeshita K et al (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 103:7432–7437. Scholar
  20. 20.
    Calò LA, Pessina AC, Semplicini A (2005) Angiotensin II signalling in Bartter’s and Gitelman’s syndromes: a negative human model of hypertension. High Blood Press Cardiovasc Prev 12:17–26. Scholar
  21. 21.
    Calò LA (2006) Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int 69:963–966. Scholar
  22. 22.
    Calò LA, Davis PA, Pagnin E et al (2014b) Increased level of p63RhoGEF and RhoA/Rho kinase activity in hypertensive patients. J Hypertens 32:331–338. Scholar
  23. 23.
    Calò LA, Vertolli U, Pagnin E et al (2016) Increased Rho kinase activity in mononuclear cells of dialysis and stage 3-4 chronic kidney disease patients with left ventricular hypertrophy: cardiovascular risk implications. Life Sci 148:80–85. Scholar
  24. 24.
    Calò LA, Dal Maso L, Pagnin E et al (2014a) Effect of olmesartan medoxomil on number and survival of circulating endothelial progenitor cells and calcitonin gene related peptide in hypertensive patients. J Hypertens 32:193–199. Scholar
  25. 25.
    Ravarotto V, Pagnin E, Maiolino G et al (2015b) The blocking of angiotensin II type 1 receptor and RhoA/Rho kinase activity in hypertensive patients: effect of olmesartan medoxomil and implication with cardiovascular-renal remodeling. JRAAS – J Renin-Angiotensin-Aldosterone Syst 16:1245–1250. Scholar
  26. 26.
    Badyal DK, Lata H, Dadhich AP (2003) Animal models of hypertension and effect of drugs. Indian J Pharmacol 35:349–362.
  27. 27.
    Leong X-F, Ng C-Y, Jaarin K (2015) Animal models in cardiovascular research: hypertension and atherosclerosis. Biomed Res Int 2015:1–11. Scholar
  28. 28.
    Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84CrossRefGoogle Scholar
  29. 29.
    Shokoji T, Nishiyama A, Fujisawa Y et al (2003) Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension (Dallas, Tex 1979) 41:266–273CrossRefGoogle Scholar
  30. 30.
    Laursen JB, Rajagopalan S, Galis Z et al (1997) Role of superoxide in angiotensin II-induced but not catecholamine- induced hypertension. Circulation 95:588–593. Scholar
  31. 31.
    Tanito M, Nakamura H, Kwon Y-W et al (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97. Scholar
  32. 32.
    Brosnan MJ, Hamilton CA, Graham D et al (2002) Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens 20:281–286CrossRefGoogle Scholar
  33. 33.
    Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252. Scholar
  34. 34.
    Zhang W, Han Y, Meng G et al (2014) Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc 3:e000606. Scholar
  35. 35.
    Chandran G, Sirajudeen KNS, Yusoff NSN et al (2014) Effect of the antihypertensive drug enalapril on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat. Oxidative Med Cell Longev 2014:608512. Scholar
  36. 36.
    Ahmad A, Singhal U, Hossain MM et al (2013) The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. J Clin Diagn Res 7:987–990PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rodrigo R, Bächler JP, Araya J et al (2007) Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol Cell Biochem 303:73–81CrossRefGoogle Scholar
  38. 38.
    Russo C, Olivieri O, Girelli D et al (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16:1267–1271CrossRefGoogle Scholar
  39. 39.
    Togliatto G, Lombardo G, Brizzi MF (2017) The future challenge of reactive oxygen species (ROS) in hypertension: from bench to bed side. Int J Mol Sci 18:1988CrossRefGoogle Scholar
  40. 40.
    Cracowski JL, Baguet JP, Ormezzano O et al (2003) Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 41:286–288CrossRefGoogle Scholar
  41. 41.
    Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin North Am 93:621–635. Scholar
  42. 42.
    Touyz RM, Schiffrin EL (2001) Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 19:1245–1254. Lippincott Williams & WilkinsCrossRefGoogle Scholar
  43. 43.
    Fliser D, Buchholz K, Haller H, EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators (2004) Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 110:1103–1107. Scholar
  44. 44.
    Ahmad KA, Yuan Yuan D, Nawaz W et al (2017) Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res 51:428–438. Scholar
  45. 45.
    Hornig B, Landmesser U, Kohler C et al (2001) Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103:799–805. Scholar
  46. 46.
    Rodrigo R, Prat H, Passalacqua W et al (2008) Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin Sci 114:625–634. Scholar
  47. 47.
    Juraschek SP, Guallar E, Appel LJ et al (2012) Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr 95:1079–1088. Scholar
  48. 48.
    Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325CrossRefGoogle Scholar
  49. 49.
    Navab M, Berliner JA, Watson AD et al (1996) The Yin and Yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff memorial lecture. Arterioscler Thromb Vasc Biol 16:831–842CrossRefGoogle Scholar
  50. 50.
    Choi SH, Harkewicz R, Lee JH et al (2009) Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104:1355–1363. Scholar
  51. 51.
    Parhami F, Fang ZT, Fogelman AM et al (1993) Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 92:471–478. Scholar
  52. 52.
    Henriksen T, Mahoney EM, Steinberg D (1981) Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A 78:6499–6503. Scholar
  53. 53.
    Husain K (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6:209–217. Scholar
  54. 54.
    Münzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748. Scholar
  55. 55.
    Hill JM, Zalos G, Halcox JPJ et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600. Scholar
  56. 56.
    Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104CrossRefGoogle Scholar
  57. 57.
    Zhou Z, Peng J, Wang C-J et al (2010) Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J Hypertens 28:931–939. Scholar
  58. 58.
    Münzel T, Camici GG, Maack C et al (2017) Impact of oxidative stress on the heart and vasculature. J Am Coll Cardiol 70:212–229. Scholar
  59. 59.
    Ungvári Z, Gupte SA, Recchia FA et al (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229CrossRefGoogle Scholar
  60. 60.
    Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364:593–611. Scholar
  61. 61.
    Wagner S, Rokita AG, Anderson ME, Maier LS (2013) Redox regulation of sodium and calcium handling. Antioxid Redox Signal 18:1063–1077. Scholar
  62. 62.
    Mollnau H, Oelze M, August M et al (2005) Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy. Arterioscler Thromb Vasc Biol 25:2554–2559. Scholar
  63. 63.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. Scholar
  64. 64.
    CONSENSUS Trial Study Group (1987) Effects of Enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429–1435. Scholar
  65. 65.
    Dai DF, Johnson SC, Villarin JJ et al (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Gαq overexpression-induced heart failure. Circ Res 108:837–846. Scholar
  66. 66.
    Schäfer A, Fraccarollo D, Tas P et al (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6:151–159. Scholar
  67. 67.
    Park S-H, Stenvinkel P, Lindholm B (2012) Cardiovascular biomarkers in chronic kidney disease. J Ren Nutr 22:120–127. Scholar
  68. 68.
    Sun J, Axelsson J, Machowska A et al (2016) Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin J Am Soc Nephrol 11:1163–1172. Scholar
  69. 69.
    Imig JD, Ryan MJ (2013) Immune and inflammatory role in renal disease. Compr Physiol 3:957–976. Scholar
  70. 70.
    Robertson J, Wu J, Arends J et al (2005) Activation of glomerular basement membrane-specific B cells in the renal draining lymph node after T cell-mediated glomerular injury. J Am Soc Nephrol 16:3256–3263. Scholar
  71. 71.
    Yasuda H, Leelahavanichkul A, Tsunoda S et al (2008) Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 294:F1050–F1058. Scholar
  72. 72.
    Zhang B, Ramesh G, Uematsu S et al (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19:923–932. Scholar
  73. 73.
    Nataraj C, Oliverio MI, Mannon RB et al (1999) Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J Clin Invest 104:1693–1701. Scholar
  74. 74.
    Matsumoto K, Morishita R, Moriguchi A et al (1999) Prevention of renal damage by angiotensin II blockade, accompanied by increased renal hepatocyte growth factor in experimental hypertensive rats. Hypertension (Dallas, Tex 1979) 34:279–284CrossRefGoogle Scholar
  75. 75.
    Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 298:F662–F671. Scholar
  76. 76.
    Libetta C, Sepe V, Esposito P et al (2011) Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem 44:1189–1198. Scholar
  77. 77.
    Calò LA, Naso A, Pagnin E et al (2004a) Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis–a molecular biological approach. Clin Nephrol 62:355–361CrossRefGoogle Scholar
  78. 78.
    Calò LA, Naso A, D’Angelo A et al (2011) Molecular biology-based assessment of vitamin E-coated dialyzer effects on oxidative stress, inflammation, and vascular remodeling. Artif Organs 35:33. Scholar
  79. 79.
    Calo LA, Naso A, Carraro G et al (2007) Effect of haemodiafiltration with online regeneration of ultrafiltrate on oxidative stress in dialysis patients. Nephrol Dial Transplant 22:1413–1419. Scholar
  80. 80.
    Calò LA, Naso A, Davis PA et al (2010) Hemodiafiltration with online regeneration of ultrafiltrate: effect on heme-oxygenase-1 and inducible subunit of nitric oxide synthase and implication for oxidative stress and inflammation. Artif Organs 35:183–187. Scholar
  81. 81.
    Calo LA, Vertolli U, Davis PA et al (2014) Molecular biology based assessment of green tea effects on oxidative stress and cardiac remodelling in dialysis patients. Clin Nutr 33:437–442. Scholar
  82. 82.
    Aoki J, Ikari Y, Nakajima H et al (2005) Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int 67:333–340. Scholar
  83. 83.
    Gabrielli L, Winter JL, Godoy I et al (2014) Increased Rho-kinase activity in hypertensive patients with left ventricular hypertrophy. Am J Hypertens 27:838–845. Scholar
  84. 84.
    Ravarotto V, Pagnin E, Fragasso A et al (2015a) Angiotensin II and cardiovascular-renal remodelling in hypertension: insights from a human model opposite to hypertension. High Blood Press Cardiovasc Prev 22:215–223. Scholar
  85. 85.
    Calò LA, Davis PA, Rossi GP (2014c) Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae. J Hypertens 32:2109–2119. Scholar
  86. 86.
    Calò LA, Pagnin E, Davis PA et al (2003) Oxidative stress-related factors in Bartter’s and Gitelman’s syndromes: relevance for angiotensin II signalling. Nephrol Dial Transplant 18:1518–1525CrossRefGoogle Scholar
  87. 87.
    Calò L, Ceolotto G, Milani M et al (2001) Abnormalities of Gq-mediated cell signaling in Bartter and Gitelman syndromes1∗1See editorial by Warnock, p. 1197. Kidney Int 60:882–889. Scholar
  88. 88.
    Calò L, Davis PA, Semplicini A (2002) Reduced content of α subunit of Gq protein content in monocytes of Bartter and Gitelman syndromes: relationship with vascular hyporeactivity. Kidney Int 61:353–354. Scholar
  89. 89.
    Calò LA, Pagnin E, Davis PA et al (2004b) Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter’s/Gitelman’s syndrome. A role in the control of vascular tone and implication for hypertension. J Clin Endocrinol Metab 89:4153–4157. Scholar
  90. 90.
    Semplicini A, Lenzini L, Sartori M et al (2006) Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens 24:1115–1124. Scholar
  91. 91.
    Calò L, Sartore G, Bassi A et al (1998) Reduced susceptibility to oxidation of low-density lipoprotein in patients with overproduction of nitric oxide (Bartter’s and Gitelman’s syndrome). J Hypertens 16:1001–1008CrossRefGoogle Scholar
  92. 92.
    Pagnin E, Davis PA, Sartori M et al (2004) Rho kinase and PAI-1 in Bartter’s/Gitelman’s syndromes: relationship to angiotensin II signaling. J Hypertens 22:1963–1969CrossRefGoogle Scholar
  93. 93.
    Calò LA, Pessina AC (2007) RhoA/Rho-kinase pathway: much more than just a modulation of vascular tone. Evidence from studies in humans. J Hypertens 25:259–264. Scholar
  94. 94.
    Caló LA, Davis PA, Pagnin E et al (2008) Linking inflammation and hypertension in humans: studies in Bartter’s/Gitelman’s syndrome patients. J Hum Hypertens 22:223–225. Scholar
  95. 95.
    Davis PA, Mussap M, Pagnin E et al (2006) Early markers of inflammation in a high angiotensin II state – results of studies in Bartter’s/Gitelman’s syndromes. Nephrol Dial Transplant 21:1697–1701. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Giuseppe Maiolino
    • 1
  • Verdiana Ravarotto
    • 1
  • Lorenzo A. Calò
    • 1
    Email author
  1. 1.Department of Medicine, NephrologyUniversity of PadovaPadovaItaly

Personalised recommendations