Mitochondrial Dysfunction and Oxidative Stress: Focusing on Cardiac Hypertrophy and Heart Failure

  • Parmeshwar B. Katare
  • Hina L. Nizami
  • Sanjay K. BanerjeeEmail author


Heart failure is one of the leading causes of death in the industrialized countries. A complex clinical syndrome, essentially marked by compromised cardiac function and chronic heart failure is often preceded by cardiac hypertrophy. Cardiac hypertrophy is the enlargement of the cardiomyocytes, which is initially an adaptive response to increased pressure or volume load in heart. Prolonged haemodynamic load, however, results in pathological cardiac hypertrophy involving reactivation of fetal gene program, myocardial fibrosis and increased heart weight indices, eventually leading to heart failure. Changes in signalling modules such as cardiac contractile machinery, calcium ion homeostasis, mitochondrial dysfunction and oxidative stress have been speculated to play critical roles in the development and progression of heart failure. Mitochondria, occupying about 30% mass of a cardiomyocyte and produce >95% ATP required by the heart. The energy requirements of the heart are met primarily by fatty acid oxidation that takes place in the mitochondria which, leads to generation of ATP coupled to reduction of oxygen to water. About 2% of the oxygen consumed by the mitochondria gets converted to reactive oxygen species (ROS). Dysfunctional mitochondria become deficient in oxidative phosphorylation-induced energy production, and generate increased level of ROS. Mitochondrial dysfunction and oxidative stress share a bidirectional association, and have both been implicated in cardiac hypertrophy and failure. While oxidative stress induces cellular damage by attacking biomolecules and indirectly by activating maladaptive signalling cascades, mitochondrial dysfunction is implicated in the transition from compensatory hypertrophy to heart failure. Current treatments used in cardiac hypertrophy and failure are inadequate. However, new evidence has suggested changes in mitochondria plays a crucial role in progression and severity of the disease. Here in the present book chapter, we are going discuss the central role of mitochondria in developing cardiac hypertrophy and failure and future strategy to develop novel therapy.



Adenosine triphosphate


Damage associated molecular patterns


Nicotinamide adenine dinucleotide


NADPH oxidases


Oxidative phosphorylation system


Pathogen recognition receptors


Reactive nitrogen species


Reactive oxygen species


Tricarboxylic acid cycle


Mitochondrial transcription factor A


Toll like receptor


Xanthine dehydrogenase


Xanthine oxidase



PBK is thankful to Indian Council of Medical Research (ICMR) for awarding senior research fellowship (SRF). HLN is thankful to Council for Scientific and Industrial Research (CSIR) for awarding senior research fellowship (SRF).

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13(1):89CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hill S, Sataranatarajan K, Van Remmen H (2018) Role of signaling molecules in mitochondrial stress response. Front Genet 9:225CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127(6):749–756CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102(4):470–479CrossRefGoogle Scholar
  5. 5.
    McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hernández-Reséndiz S, Buelna-Chontal M, Correa F, Zazueta C (2012) Oxidative stress and mitochondrial dysfunction in cardiovascular diseases. Oxidative Stress and Diseases 8:157–188. Available from:
  7. 7.
    Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang K, Xu Y, Sun Q, Long J, Liu J, Ding J (2018) Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms. Free Radic Res 52:1–10CrossRefGoogle Scholar
  9. 9.
    Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40(5–6):553–560CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 93(8):3199–3207CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:194–209Google Scholar
  12. 12.
    Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 2016:3164734CrossRefGoogle Scholar
  13. 13.
    Moris D, Spartalis M, Tzatzaki E, Spartalis E, Karachaliou G-S, Triantafyllis AS, Karaolanis GI, Tsilimigras DI, Theocharis S (2017) The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 5(16):324CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50(7):777–793CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW, Kang YJ, Prolla TA (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res 108(7):837–846CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rosca MG, Tandler B, Hoppel CL (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Santulli G (2017) Mitochondrial dynamics in cardiovascular medicine, vol 982. Springer, ChamCrossRefGoogle Scholar
  19. 19.
    Kohlhaas M, Nickel AG, Maack C (2017) Mitochondrial energetics and calcium coupling in the heart. J Physiol 595(12):3753–3763CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gunga H-C, von Ahlefeld VW, Coriolano H-JA, Werner A, Hoffmann U (2016) Cardiovascular system, red blood cells, and oxygen transport in microgravity. Springer, ChamCrossRefGoogle Scholar
  21. 21.
    Katz AM (2010) Physiology of the heart. Lippincott, Williams, and Wilkins, Philadelphia, pp 427–461Google Scholar
  22. 22.
    Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258(1):1–19CrossRefGoogle Scholar
  23. 23.
    Dorn GW II (2013) Mitochondrial dynamics in heart disease. Biochim Biophys Acta 1833(1):233–241CrossRefGoogle Scholar
  24. 24.
    Friehs I, Barillas R, Vasilyev NV, Roy N, McGowan FX, del Nido PJ (2006) Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation 114(1_suppl):I-290–I-295CrossRefGoogle Scholar
  25. 25.
    Shiflett A, Johnson PJ (2010) Mitochondrion-related organelles in parasitic eukaryotes. Annu Rev Microbiol 64:409CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Skulachev VP (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Asp Med 20(3):139–184CrossRefGoogle Scholar
  27. 27.
    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JG, Colucci WS, Butler J, Voors AA (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S (2015) Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 22(17):1563–1586CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Towbin JA, Lipshultz SE (1999) Genetics of neonatal cardiomyopathy. Curr Opin Cardiol 14(3):250CrossRefGoogle Scholar
  31. 31.
    Nicolson GL (2014) Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integ Med 13(4):35Google Scholar
  32. 32.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61(6):599–610CrossRefGoogle Scholar
  34. 34.
    Violi F, Cangemi R (2005) Antioxidants and cardiovascular disease. Curr Opin Investig Drugs 6(9):895–900PubMedGoogle Scholar
  35. 35.
    Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta (BBA) – Mol Basis Dis 1863(5):1066–1077CrossRefGoogle Scholar
  36. 36.
    Sheeran FL, Pepe S (2006) Energy deficiency in the failing heart: linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim Biophys Acta Bioenergetics 1757(5–6):543–552CrossRefGoogle Scholar
  37. 37.
    Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res.
  38. 38.
    Kang J, Pervaiz S (2012) Mitochondria: redox metabolism and dysfunction. Biochem Res Int 2012:1–14CrossRefGoogle Scholar
  39. 39.
    Kasahara T, Kato T (2017) What can mitochondrial DNA analysis tell us about mood disorders? Biol Psychiatry 9(83):731–738Google Scholar
  40. 40.
    Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907CrossRefGoogle Scholar
  41. 41.
    Sag CM, Santos CX, Shah AM (2014) Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol 73:103–111CrossRefGoogle Scholar
  42. 42.
    Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343CrossRefGoogle Scholar
  43. 43.
    Katare PB, Bagul PK, Dinda AK, Banerjee SK (2017) Toll-like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8:719CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sultana MR, Bagul PK, Katare PB, Mohammed SA, Padiya R, Banerjee SK (2016) Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes. Life Sci 164:42–51CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K-i, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85(4):357–363CrossRefGoogle Scholar
  46. 46.
    Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24(21):9414–9423CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stanley BA, Sivakumaran V, Shi S, MacDonald I, Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase 2 is essential for keeping low levels of H2O2 emission from isolated heart mitochondria. J Biol Chem.
  48. 48.
    Dai D-F, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brandes RP, Weissmann N, Schröder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49(5):687–706CrossRefGoogle Scholar
  50. 50.
    Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Santos CX, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR (2014) Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 20(1):121–134CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham M, Shah AM, McDermott BJ, Grieve DJ (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res 2664:2010Google Scholar
  53. 53.
    Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci 107(35):15565–15570CrossRefGoogle Scholar
  54. 54.
    Chin K-T, Kang G, Qu J, Gardner LB, Coetzee WA, Zito E, Fishman GI, Ron D (2011) The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load. FASEB J 25(8):2583–2591CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20(2):267–280CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta (BBA) – Mol Cell Res 1813(7):1323–1332CrossRefGoogle Scholar
  57. 57.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lu D, Ma Y, Zhang W, Bao D, Dong W, Lian H, Huang L, Zhang L (2012) Knockdown of cytochrome P450 2E1 inhibits oxidative stress and apoptosis in the cTnTR141W dilated cardiomyopathy transgenic mice. Hypertension 60(1):81–89CrossRefGoogle Scholar
  59. 59.
    Chung HY, Baek BS, Song SH, Kim MS, Im Huh J, Shim KH, Kim KW, Lee KH (1997) Xanthine dehydrogenase/xanthine oxidase and oxidative stress. AGE 20(3):127–140CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) Mammalian xanthine oxidoreductase–mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289CrossRefGoogle Scholar
  61. 61.
    Minhas KM, Saraiva RM, Schuleri KH, Lehrke S, Zheng M, Saliaris AP, Berry CE, Vandegaer KM, Li D, Hare JM (2006) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98(2):271–279CrossRefGoogle Scholar
  62. 62.
    Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New YorkCrossRefGoogle Scholar
  63. 63.
    Tsutsui H, Kinugawa S, Matsushima S (2008) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456CrossRefGoogle Scholar
  64. 64.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Phys Heart Circ Phys 301(6):H2181–H2190Google Scholar
  65. 65.
    Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26(11):1298–1307CrossRefGoogle Scholar
  66. 66.
    Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S (2018) Acetylation of mitochondrial proteins in the heart: the role of SIRT3. Front Physiol 9:1094CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK (2012) Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 66(3):260–268CrossRefGoogle Scholar
  68. 68.
    K Bagul P, K Banerjee S (2013) Insulin resistance, oxidative stress and cardiovascular complications: role of sirtuins. Curr Pharm Des 19(32):5663–5677CrossRefGoogle Scholar
  69. 69.
    Hahn WS, Kuzmicic J, Burrill JS, Donoghue MA, Foncea R, Jensen MD, Lavandero S, Arriaga EA, Bernlohr DA (2014) Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Am J Physiol Endocrinol Metab 306(9):E1033–E1045CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lee SR, Kim N, Noh Y, Xu Z, Ko KS, Rhee BD, Han J (2016) Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations. Front Biosci 21:1410–1426CrossRefGoogle Scholar
  73. 73.
    Du Q, Zhu B, Zhai Q, Yu B (2017) Sirt3 attenuates doxorubicin-induced cardiac hypertrophy and mitochondrial dysfunction via suppression of Bnip3. Am J Transl Res 9(7):3360PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wüst RC, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HW, Stienen GJ (2016) Mitochondrial complex I dysfunction and altered NAD (P) H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111(4):362–372CrossRefGoogle Scholar
  75. 75.
    Santulli G, Xie W, Reiken SR, Marks AR (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci 112(36):11389–11394CrossRefGoogle Scholar
  76. 76.
    Wai T, García-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Rupérez FJ, Barbas C, Ibañez B, Langer T (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116CrossRefGoogle Scholar
  77. 77.
    Hunter WG, Kelly JP, McGarrah RW III, Khouri MG, Craig D, Haynes C, Ilkayeva O, Stevens RD, Bain JR, Muehlbauer MJ (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Adebiyi AO, Adebiyi OO, Owira PM (2016) Naringin mitigates cardiac hypertrophy by reducing oxidative stress and inactivating c-Jun nuclear kinase-1 protein in type I diabetes. J Cardiovasc Pharmacol 67(2):136–144CrossRefGoogle Scholar
  79. 79.
    Zhao L, Wu D, Sang M, Xu Y, Liu Z, Wu Q (2017) Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. Int Immunopharmacol 48:102–109CrossRefGoogle Scholar
  80. 80.
    Zhou S, Sun W, Zhang Z, Zheng Y (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Med Cell Longev 2014:260429Google Scholar
  81. 81.
    Yokoe S, Asahi M (2017) Phospholamban is downregulated by pVHL-mediated degradation through oxidative stress in failing heart. Int J Mol Sci 18(11):2232CrossRefGoogle Scholar
  82. 82.
    Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC (2013) mTOR inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem.
  83. 83.
    Benderdour M, Charron G, Comte B, Ayoub R, Beaudry D, Foisy S, Des Rosiers C (2017) Decreased cardiac mitochondrial NADP+-isocitrate dehydrogenase activity and expression: a marker of oxidative stress in hypertrophy development. Am J Phys Heart Circ Phys 287(5):H2122–H2131Google Scholar
  84. 84.
    Ku HJ, Ahn Y, Lee JH, Park KM, Park J-W (2015) IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice. Free Radic Biol Med 80:84–92CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Caldas FRL, Leite IMR, Filgueiras ABT, de Figueiredo Júnior IL, de Sousa TAGM, Martins PR, Kowaltowski AJ, Facundo HTF (2015) Mitochondrial ATP-sensitive potassium channel opening inhibits isoproterenol-induced cardiac hypertrophy by preventing oxidative damage. J Cardiovasc Pharmacol 65(4):393–397CrossRefGoogle Scholar
  86. 86.
    Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 8(9):e73875CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hou J, Kang YJ (2012) Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 135(3):337–354CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Skibska B, Goraca A (2015) The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress. Oxidative Med Cell Longev 2015:313021CrossRefGoogle Scholar
  89. 89.
    Hegazy SK, Tolba OA, Mostafa TM, Eid MA, El-Afify DR (2013) Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. The review of diabetic studies. Rev Diabet Stud 10(1):58CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Anand I, Francis G, Maseri A, Milazzotto F, Pepine C, Yusuf S, Beaufils P, Ferrari R, Poole-Wilson P, Remme W (1999) Study on propionyl-L-carnitine in chronic heart failure. Eur Heart J 20(1):70–76CrossRefGoogle Scholar
  91. 91.
    Gürlek A, Tutar E, Akçil E, Dinçer İ, Erol Ç, Kocatürk PA, Oral D (2000) The effects of L-carnitine treatment on left ventricular function and erythrocyte superoxide dismutase activity in patients with ischemic cardiomyopathy. Eur J Heart Fail 2(2):189–193CrossRefGoogle Scholar
  92. 92.
    Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ, Gorman JH III, Sloan RC, Frasier CR, Watson CA (2012) Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc 1(3):e001644CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dai W, Cheung E, Alleman RJ, Perry JB, Allen ME, Brown DA, Kloner RA (2016) Cardioprotective effects of mitochondria-targeted peptide SBT-20 in two different models of rat ischemia/reperfusion. Cardiovasc Drugs Ther 30(6):559–566CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kloner RA (2017) Mitochondrial protective agents for ischemia/reperfusion injury. Am Heart Assoc 10(9):e005805Google Scholar
  95. 95.
    Song X, Qu H, Yang Z, Rong J, Cai W, Zhou H (2017) Efficacy and safety of L-carnitine treatment for chronic heart failure: a meta-analysis of randomized controlled trials. Biomed Res Int 2017.
  96. 96.
    Belardinelli R, Muçaj A, Lacalaprice F, Solenghi M, Seddaiu G, Principi F, Tiano L, Littarru GP (2006) Coenzyme Q10 and exercise training in chronic heart failure. Eur Heart J 27(22):2675–2681CrossRefGoogle Scholar
  97. 97.
    Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, Alehagen U, Steurer G, Littarru GP, investigators Q-Ss (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2(6):641–649CrossRefGoogle Scholar
  98. 98.
    Diguet N, Trammell SA, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B, Blanc J (2018) Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137(21):2256–2273CrossRefGoogle Scholar
  99. 99.
    Agadjanyan M, Vasilevko V, Ghochikyan A, Berns P, Kesslak P, Settineri RA, Nicolson GL (2003) Nutritional supplement (NT Factor™) restores mitochondrial function and reduces moderately severe fatigue in aged subjects. Syndrome 11(3):23–36Google Scholar
  100. 100.
    Nicolson G (2003) Lipid replacement as an adjunct to therapy for chronic fatigue, anti-aging and restoration of mitochondrial function. J Am Nutraceut Assoc 6:22–26Google Scholar
  101. 101.
    Ellithorpe RR, Settineri R, Nicolson GL (2003) Pilot study: reduction of fatigue by use of a dietary supplement containing glycophospholipids. J Am Nutraceutical Assoc 6(1):23–28Google Scholar
  102. 102.
    Nicolson GL, Settineri R, Ellithorpe R (2012) Glycophospholipid formulation with NADH and CoQ10 significantly reduces intractable fatigue in Western blot-positive ‘chronic lyme disease’ patients: preliminary report. Funct Foods Health Dis 2(3):35–47CrossRefGoogle Scholar
  103. 103.
    Nicolson GL, Settineri R, Ellithorpe R (2012) Lipid replacement therapy with a glycophospholipid formulation with NADH and CoQ10 significantly reduces fatigue in intractable chronic fatiguing illnesses and chronic Lyme disease patients. Int J Clin Med 3(03):163CrossRefGoogle Scholar
  104. 104.
    Witte KK, Nikitin NP, Parker AC, von Haehling S, Volk H-D, Anker SD, Clark AL, Cleland JG (2005) The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 26(21):2238–2244CrossRefGoogle Scholar
  105. 105. (2018) Evaluating the clinical efficacy of resveratrol in improving metabolic and skeletal muscle function in patients with heart failure (REV-HF). clinicaltrialsgov
  106. 106. (2018) Resveratrol: a potential anti-remodeling agent in heart failure, From Bench to Bedside. clinicaltrialsgov
  107. 107.
    Khatua TN, Padiya R, Karnewar S, Kuncha M, Agawane SB, Kotamraju S, Banerjee SK (2012) Garlic provides protection to mice heart against isoproterenol-induced oxidative damage: role of nitric oxide. Nitric Oxide 27(1):9–17CrossRefGoogle Scholar
  108. 108.
    Khatua TN, Adela R, Banerjee SK (2013) Garlic and cardioprotection: insights into the molecular mechanisms. Can J Physiol Pharmacol 91(6):448–458CrossRefGoogle Scholar
  109. 109.
    Lei L, Liu Y (2017) Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord 17(1):196CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Rosenfeldt F, Hilton D, Pepe S, Krum H (2003) Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors 18(1–4):91–100CrossRefGoogle Scholar
  111. 111.
    Fotino AD, Thompson-Paul AM, Bazzano LA (2012) Effect of coenzyme Q10 supplementation on heart failure: a meta-analysis. Am J Clin Nutr 97(2):268–275CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra P, Isbatan A, Gupta MP (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285(5):3133–3144CrossRefGoogle Scholar
  113. 113.
    Birkmayer J (1996) Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26(1):1–9PubMedGoogle Scholar
  114. 114.
    Demarin V, Podobnik S, Storga-Tomic D, Kay G (2004) Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30(1):27–33PubMedGoogle Scholar
  115. 115.
    Nicolson GL (2007) Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function. J Cell Biochem 100(6):1352–1369CrossRefGoogle Scholar
  116. 116.
    Nicolson GL, Settineri R (2011) Lipid replacement therapy: a functional food approach with new formulations for reducing cellular oxidative damage, cancer-associated fatigue and the adverse effects of cancer therapy. Funct Foods Health Dis 1(4):135–160Google Scholar
  117. 117.
    Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35CrossRefGoogle Scholar
  119. 119.
    Hirschey M, Shimazu T, Huang J-Y, Schwer B (2011) Verdin E SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, New York, p a010850Google Scholar
  120. 120.
    Matsushima S, Sadoshima J (2015) The role of sirtuins in cardiac disease. Am J Phys Heart Circ Phys 309(9):H1375–H1389Google Scholar
  121. 121.
    Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, Meyer-Steenbuck M, Cenkerova K, Hoffmann MM, Jaeger C (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stančáková A, Goetzman E, Lam MM, Schwer B (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44(2):177–190CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Siahpirani AF, Kemmerer ZA, Prolla TA, Roy S, Coon JJ, Denu JM (2015) SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab 21(4):637–646CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Smith RM, Lecour S, Sack MN (2002) Innate immunity and cardiac preconditioning: a putative intrinsic cardioprotective program. Cardiovasc Res 55(3):474–482CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    De Haan J, Smeets M, Pasterkamp G, Arslan F (2013) Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediat Inflamm 2013:206039Google Scholar
  126. 126.
    Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, Mann DL (2015) Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc 4(6):e001993CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Suresh R, Mosser DM (2013) Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ 37(4):284–291CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Srikrishna G, Freeze HH (2009) Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11(7):615–628CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Parmeshwar B. Katare
    • 1
  • Hina L. Nizami
    • 1
  • Sanjay K. Banerjee
    • 1
    Email author
  1. 1.Drug Discovery Research Centre (DDRC)Translational Health Science and Technology Institute (THSTI)FaridabadIndia

Personalised recommendations