Oxidative Stress Mechanisms in Type 2 Diabetes Induced Coronary Heart Disease

  • Keerthi Kupsal
  • Surekha Rani Hanumanth


Type 2 Diabetes (T2D) is a leading cause for major macrovascular complications like Coronary Heart disease (CHD). The number of CHD deaths attributable to diabetes has been increasing alarmingly. Oxidative stress induced by several metabolic derangements/pathways including hyperglycemia, hyperinsulinemia, dyslipidemia, insulin resistance and diminished antioxidant capacity, is one of the proposed pathogenic mechanisms for progression of CHD in type 2 diabetic subjects. Risk of CHD in type 2 diabetics is also influenced by several genetic factors apart from confounding risk factors. Several single nucleotide polymorphisms (SNPs) in oxidative stress related genes like CYBA, TXNIP, TRXR2, MPO and PARP-1 are known to be associated with diabetes induced CHD. Hence, understanding the molecular and genetic pathophysiological mechanisms contributed by oxidative stress is vital to the prevention and management of diabetes-induced CHD.


Type 2 diabetes mellitus Coronary heart disease Oxidative stress Reactive oxygen species Antioxidants Single nucleotide polymorphisms 


  1. 1.
    Beckman JA, Paneni F, Cosentino F, Creager MA (2013) Clinical update. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34(31):2444–2456PubMedCrossRefGoogle Scholar
  2. 2.
    Ogurtsova K, Fernandes JDR, Huang Y, Linnenkamp U, Guariguata L, Cho NH et al (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50PubMedCrossRefGoogle Scholar
  3. 3.
    Uppu RM, Parinandi NL (2011) Insulin sensitization and resistance interrelationship revisited with a quantitative molecular model approach. J Diabetes Metab Disord 2(6):106eGoogle Scholar
  4. 4.
    Li YW, Aronow WS (2011) Diabetes mellitus and cardio vascular disease. J Clin Exp Cardiol 2:114CrossRefGoogle Scholar
  5. 5.
    Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1diabetes. N Engl J Med 353(25):2643–2653PubMedCrossRefGoogle Scholar
  6. 6.
    Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234PubMedCrossRefGoogle Scholar
  7. 7.
    Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta analysis of 102 prospective studies. Lancet 375(9733):2215–2222PubMedCrossRefGoogle Scholar
  8. 8.
    Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110(3):281–290PubMedCrossRefGoogle Scholar
  9. 9.
    Gu K, Cowie CC, Harris MI (1999) Diabetes and decline in heart disease mortality in US adults. JAMA 281(14):1291–1297PubMedCrossRefGoogle Scholar
  10. 10.
    Kirpichnikov D, Sowers JR (2001) Diabetes mellitus and diabetes-associated vascular disease. Trends Endocrinol Metab 12(5):225–230PubMedCrossRefGoogle Scholar
  11. 11.
    Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S (2006) Endothelial dysfunction in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 16(Suppl. 1):S39–S45PubMedCrossRefGoogle Scholar
  12. 12.
    Sundaram RK, Bhaskar A, Vijayalingam S, Viswanatthan M, Mohan R, Shanmugasundaram KR (1996) Antioxidant status and lipid peroxidation in type II diabetes with and without complications. Clin Sci 90:255–260PubMedCrossRefGoogle Scholar
  13. 13.
    Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J et al (1997) Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40:647–653PubMedCrossRefGoogle Scholar
  14. 14.
    Maxwell SRJ, Thomason H, Sandler D et al (1997) Antioxidant status in patients with uncomplicated insulin-dependent and non insulin-dependent diabetes mellitus. Eur J Clin Investig 27:484–490CrossRefGoogle Scholar
  15. 15.
    Wali U, Jogana MU, Zarummai AL, Saidu Y (2011) Antioxidant vitamins and trace elements status of diabetics in Sokoto, Nigeria. Niger J Basic Appl Sci 19(1):130–134Google Scholar
  16. 16.
    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49(11):1939–1945CrossRefGoogle Scholar
  17. 17.
    Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48(6):1270–1274PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki LA, Poot M, Gerrity RG, Bornfeldt KE (2001) Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis: lack of direct growth-promoting effects of high glucose levels. Diabetes 50(4):851–860PubMedCrossRefGoogle Scholar
  19. 19.
    Fukumoto H, Naito Z, Asano G, Aramaki T (1998) Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb 5(1):29–35PubMedCrossRefGoogle Scholar
  20. 20.
    Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803PubMedCrossRefGoogle Scholar
  21. 21.
    Hussain MJ, Peakman M, Gallati H et al (1996) Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 39:60–69PubMedGoogle Scholar
  22. 22.
    Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Tsao PS (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 88(12):1291–1298PubMedCrossRefGoogle Scholar
  23. 23.
    Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I et al (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505PubMedCrossRefGoogle Scholar
  24. 24.
    Valko M, Rhodes CJ, Moncol J, Izakovik M, Mazure M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40PubMedCrossRefGoogle Scholar
  25. 25.
    Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295PubMedCrossRefGoogle Scholar
  26. 26.
    Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73:411–418PubMedCrossRefGoogle Scholar
  27. 27.
    Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835PubMedCrossRefGoogle Scholar
  28. 28.
    Zschauer TC, Matsushima S, Altschmied J, Shao D, Sadoshima J, Haendeler J (2013) Interacting with thioredoxin-1--disease or no disease? Antioxid Redox Signal 18:1053–1062PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14:149–153PubMedCrossRefGoogle Scholar
  30. 30.
    Ghattas MH, Abo-Elmatty DM (2012) Association of polymorphic markers of the catalase and superoxide dismutase genes with type 2 diabetes mellitus. DNA Cell Biol 31:1598–1603PubMedCrossRefGoogle Scholar
  31. 31.
    Sindhu RK, Koo JR, Roberts CK, Vaziri ND (2004) Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin Exp Hypertens 26:43–53PubMedCrossRefGoogle Scholar
  32. 32.
    Luan R, Liu S, Yin T, Lau WB, Wang Q, Guo WY, Wang HC, Tao L (2009) High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation. Cardiovasc Res 83:294–302PubMedCrossRefGoogle Scholar
  33. 33.
    Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269(13):9397–9400PubMedGoogle Scholar
  34. 34.
    Rodrigo R, Libuy M, Feliú F, Hasson D (2013) Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. Biomed Res Int 2013:1–15CrossRefGoogle Scholar
  35. 35.
    Motoyama T, Kawano H, Kugiyama K, Hirashima O, Ohgushi M, Tsunoda R, Moriyama Y, Miyao Y, Yoshimura M, Ogawa H, Yasue H (1998) Vitamin E administration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. J Am Coll Cardiol 32(6):1672–1679PubMedCrossRefGoogle Scholar
  36. 36.
    Islam KN, Devaraj S, Jialal I (1998) Tocopherol enrichment of monocytes decreases agonist-induced adhesion to human endothelial cells. Circulation 98(21):2255–2261PubMedCrossRefGoogle Scholar
  37. 37.
    Polidori MC, Mecocci P, Stahl W, Parente B, Cecchetti R, Cherubini A, Cao P, Sies H, Senin U (2000) Plasma levels of lipophilic antioxidants in very old patients with type 2 diabetes. Diabetes Metab Res Rev 16(1):15–19PubMedCrossRefGoogle Scholar
  38. 38.
    Merzouk S, Hichami A, Madani S, Merzouk H, Berrouiguet AY, Prost J, Moutairou K, Chabane-Sari N, Khan NA (2003) Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. Gen Physiol Biophys 22:15–27PubMedGoogle Scholar
  39. 39.
    Odum EP, Ejilemele AA, Wakwe VC (2012) Antioxidant status of type 2 diabetic patients in Port Harcourt, Nigeria. Niger J Clin Pract 15(1):55–58PubMedCrossRefGoogle Scholar
  40. 40.
    Newton AC (2009) Lipid activation of protein kinases. J Lipid Res 50(Suppl):S266–S271PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cameron J, Cruikshank JK (2007) Glucose, insulin, diabetes and mechanisms of arterial dysfunction. Clin Exp Pharmacol Physiol 34:677–682PubMedCrossRefGoogle Scholar
  42. 42.
    Vinik A, Flemmer M (2002) Diabetes and macrovascular disease. J Diabetes Complicat 16:235–245PubMedCrossRefGoogle Scholar
  43. 43.
    Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (1999) Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Diabetes 48(2):383–390CrossRefGoogle Scholar
  44. 44.
    Muniyappa R, Iantorno M, Quon MJ (2008) An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am 37(3):685–711CrossRefGoogle Scholar
  45. 45.
    Surapon T (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480CrossRefGoogle Scholar
  46. 46.
    Paniagua JA (2016) Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes 7(19):483–514PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, LeBoeuf R, Buller CL, Sweet IR, Pennathur S, Abel ED, Chait A (2012) NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem 287(13):10379–10393PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Luft FC (2002) Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases. Curr Opin Nephrol Hypertens 11(1):59–66PubMedCrossRefGoogle Scholar
  49. 49.
    O’Driscoll G, Green D, Rankin J et al (1997) Improvement in endothelial function by angiotensin converting enzyme inhibition in insulin dependent diabetes mellitus. J Clin Invest 100:678–684PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Boucher J, Kleinridders A, Ronald Kahn C (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6(1):a009191PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sengupta A, Patel PA, Yuldasheva NY, Mughal RS, Galloway S, Viswambharan H, Walker AMN, Aziz A, Smith J, Ali N, Mercer BN, Imrie H, Sukumar P, Wheatcroft SB, Kearney MT, Cubbon RM (2018) Endothelial insulin receptor restoration rescues vascular function in male insulin receptor Haploin sufficient mice. Endocrinology 159(8):2917–2925PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jiang ZY, Lin Y, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 104(4):447–457PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Montagnani M, Golovchenko I, Kim I, Koh GY, Goalstone ML, Mundhekar AN, Johansen M, Kucik DF, Quon MJ, Draznin B (2002) Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 277(3):1794–1799PubMedCrossRefGoogle Scholar
  54. 54.
    Guzik TJ, Mussa S, Gastaldi D et al (2002) Mechanisms of increased vascular superoxide production in human diabetesmellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105(14):1656–1662PubMedCrossRefGoogle Scholar
  55. 55.
    Kim YK, Lee M-S, Son SM et al (2002) Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes. Diabetes 51(2):522–527PubMedCrossRefGoogle Scholar
  56. 56.
    Sowers JR (2004) Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 286:H1597–H1602PubMedCrossRefGoogle Scholar
  57. 57.
    Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M (2006) Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116:1071–1080PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Banerjee M, Vats P (2014) Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Indian J Hum Genet 20(1):10–19PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Qi L, Parast L, Cai T, Powers C, Gervin EV, Hauser TH, Hu FB, Doria A (2011) Genetic susceptibility to coronary heart disease in type 2 diabetes. J Am Coll Cardiol 58(25):2675–2682PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Katakami N, Kaneto H, Matsuoka TA, Takahara M, Imamura K, Ishibashi F et al (2010) Accumulation of gene polymorphisms related to oxidative stress is associated with myocardial infarction in Japanese type 2 diabetic patients. Atherosclerosis 212:534–538PubMedCrossRefGoogle Scholar
  61. 61.
    Dos Santos KG, Canani LH, Gross JL, Tschiedel B, Souto KE, Roisenberg I (2006) The catalase—262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes. Dis Markers 22(5–6):355–359PubMedCrossRefGoogle Scholar
  62. 62.
    Jones DA, Prior SL, Tang TS, Bain SC, Hurel SJ, Humphries SE et al (2010) Association between the rs4880 superoxide dismutase 2 (C>T) gene variant and coronary heart disease in diabetes mellitus. Diabetes Res Clin Pract 90(2):196–201PubMedCrossRefGoogle Scholar
  63. 63.
    Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox).Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Investig 86:1729–1737PubMedCrossRefGoogle Scholar
  64. 64.
    Whitehead AS, FitzGerald GA (2001) Twenty-first century phox: not yet ready for widespread screening. Circulation 103:7–9PubMedCrossRefGoogle Scholar
  65. 65.
    De Boer M, De Klein A, Hossle JP, Seger R, Corbeel L et al (1992) Cytochrome b558-negative, autosomal recessive chronic granulomatous disease: two new mutations in the cytochrome b558 light chain of the NADPH oxidase (p22-phox). Am J Hum Genet 51:1127–1135PubMedPubMedCentralGoogle Scholar
  66. 66.
    Bedard K, Attar H, Bonnefont J, Jaquet V, Borel C et al (2009) Three common polymorphisms in the CYBA gene form a haplotype associated with decreased ROS generation. Hum Mutat 30:1123–1133PubMedCrossRefGoogle Scholar
  67. 67.
    Schirmer M, Hoffmann M, Kaya E, Tzvetkov M, Brockmöller J (2007) Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. Pharmacogenomics 8:297–304CrossRefGoogle Scholar
  68. 68.
    Moreno MU, San Jose G, Fortuno A, Miguel-Carrasco JL, Beloqui O, Diez J, Zalba G (2011) The A640G CYBA polymorphism associates with subclinical atherosclerosis in. Diabetes 1(3):1467–1474Google Scholar
  69. 69.
    Schulze PC, Yoshioka J, Takahashi T et al (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279:30369–30374PubMedCrossRefGoogle Scholar
  70. 70.
    Ferreira NE, Omae S, Pereira A, Rodrigues MV, Miyakawa AA, Campos LC, Santos PC, Dallan LA, Martinez TL, Santos RD, Mill JG, Krieger JE, Pereira AC (2012) Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population. Atherosclerosis 221(1):131–136PubMedCrossRefGoogle Scholar
  71. 71.
    Wang X-b, Han Y-d, Zhang S, Cui N-h, Liu Z-j, Huang Z-l, Li C, Zheng F (2016) Associations of polymorphisms in TXNIP and gene–environment interactions with the risk of coronary artery disease in a Chinese Han population. J Cell Mol Med 20(12):2362–2373PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Saxena G, Chen J, Shalev A (2010) Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 285(6):3997–4005PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang H, Luo Y, Zhang W, He Y, Dai S, Zhang R et al (2007) Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions. Am J Pathol 170(3):1108–1120PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z et al (2009) Endothelial specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 29(4):495–502PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N et al (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental computational study. J Gen Physiol 139(6):479–491PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kariž S, Mankoč S, Petrovič D (2015) Association of thioredoxin reductase 2 (TXNRD2) gene polymorphisms with myocardial infarction in Slovene patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 108(2):323–328PubMedCrossRefGoogle Scholar
  77. 77.
    Jacobi J, Sela S, Cohen HI, Chezar J, Kristal B (2006) Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol 290(5):H2051–H2058PubMedCrossRefGoogle Scholar
  78. 78.
    Shurtz-Swirski R, Sela S, Herskovits AT, Shasha SM, Shapiro G, Nasser L et al (2001) Involvement of peripheral polymorphonuclear leukocytes in oxidative stress and inflammation in type 2 diabetic patients. Diabetes Care 24(1):104–110PubMedCrossRefGoogle Scholar
  79. 79.
    Purushothaman R, Purushothaman M, Alviar CL, Tarricone A, Vasquez M et al (2013) Increased myeloperoxidase expression is associated with increase in intra-plaque hemorrhage, iron content, inflammation and neovascularization in diabetic atherosclerosis: implications for plaque progression. J Cardiovasc Dis Diagn 1:118Google Scholar
  80. 80.
    Denzler KL, Levin WJ, Lee JJ, Lee NA (1997) The murine eosinophil peroxidase maps to chromosome 11. Mamm Genome 8:381–382PubMedCrossRefGoogle Scholar
  81. 81.
    Ergen H, Karagedik ZEK, Isbir T (2014) An association between MPO-463G/a polymorphism and type 2 diabetes. Folia Biol (Praha) 60(3):108–112Google Scholar
  82. 82.
    Garcia Soriano F, Virág L, Jagtap P, Szabó É, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabo C (2001) Diabetic endothelial dysfunction: the role of poly (ADPribose) polymerase activation. Nat Med 7:108–113PubMedCrossRefGoogle Scholar
  83. 83.
    Yu H, Ma H, Yin M, Wei Q (2012) Association between PARP-1 V762A polymorphism and cancer susceptibility: a meta-analysis. Genet Epidemiol 36:56–65PubMedCrossRefGoogle Scholar
  84. 84.
    Wang X-b, Cui N-h, Zhang S, Shu-renGuo, Liu Z-j, Ming L (2017) PARP-1 Variant Rs1136410 confers protection against coronary artery disease in a Chinese Hanpopulation: a two-stage case-control study involving 5643 subjects. Front Physiol 8:916PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chiu J, Xu BY, Chen S, Feng B, Chakrabarti S (2008) Oxidative stress-induced, poly(ADP-ribose) polymerase-dependent upregulation of ET-1 expression in chronic diabetic complications. Can J Physiol Pharmacol 86(6):365–372PubMedCrossRefGoogle Scholar
  86. 86.
    Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C (2001) Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 89:684–691PubMedCrossRefGoogle Scholar
  87. 87.
    Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Keerthi Kupsal
    • 1
  • Surekha Rani Hanumanth
    • 1
  1. 1.Department of GeneticsOsmania UniversityHyderabadIndia

Personalised recommendations