Advertisement

Regulating Inflammatory Cytokines in the Diabetic Heart

  • Santosh K. Yadav
  • Tyler N. Kambis
  • Paras K. MishraEmail author
Chapter

Abstract

Diabetes mellitus (DM) is an independent cause of cardiomyopathy. It increases the risk of heart failure and mortality, which is not alleviated by intensive glycemic control in clinical trials. Since diabetic cardiomyopathy (DMCM) can not be cured and glycemic control has limited effects on it, novel therapeutic strategies for DMCM are warranted. One of the hallmarks of the DM heart is increased inflammation that contributes to pyroptosis, an inflamamtory cell death mechanism. Pyroptosis results in release of interleukin-1β (IL-1β) and IL-18 inflamamtory cytokines that further increase inflamamtion. Thus, a vicious cycle of inflammation-induced inflammatory cell death continues leading to DMCM. Inflammation also promotes adverse cardiac remodeling leading to DMCM. Thus, the regulation of DM-induced inflammatory cytokines is important. This chapter focuses on the key regulators of inflammatory cytokines in the DM heart and their potential roles as atherapeutic target for DMCM.

Keywords

Diabetes mellitus Heart failure Inflammation Cardiomyopathy 

Notes

Acknowledgements

This work is supported, in parts, by the National Institutes of Health grants HL-113281 and HL-116205 to Paras K. Mishra.

References

  1. 1.
    Muntner P et al (2018) A comparison of the 2017 American College of Cardiology/American Heart Association blood pressure guideline and the 2017 American Diabetes Association Diabetes and Hypertension Position Statement for U.S. Adults with diabetes. Diabetes Care 41:2322–2329CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cho NH et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nichols GA et al (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27(8):1879–1884CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fox CS (2010) Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med 20(3):90–95CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Haffner SM et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234CrossRefGoogle Scholar
  6. 6.
    Nordstrom A et al (2016) Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J Clin Endocrinol Metab 101(10):3740–3746CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37(3):278–316CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ballotari P et al (2017) Sex differences in the effect of type 2 diabetes on major cardiovascular diseases: results from a population-based study in Italy. Int J Endocrinol 2017:6039356CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12(7):RA130–RA147PubMedPubMedCentralGoogle Scholar
  10. 10.
    Castagno D et al (2011) Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J 162(5):938–948 e2CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sharma A et al (2018) Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol 9:114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rubler S et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chavali V, Tyagi SC, Mishra PK (2013) Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 6:151–160PubMedPubMedCentralGoogle Scholar
  14. 14.
    Halade GV, Kain V, Serhan CN (2018) Immune responsive resolvin D1 programs myocardial infarction-induced cardiorenal syndrome in heart failure. FASEB J 32(7):3717–3729CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pan JA et al (2018) Extracellular volume by cardiac magnetic resonance is associated with biomarkers of inflammation in hypertensive heart disease. J Hypertens 37:65–72Google Scholar
  16. 16.
    Lee SJ et al (2018) Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction. J Clin Invest 128:5018–5033CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kimura T et al (2018) Tenascin-C accelerates adverse ventricular remodeling after myocardial infarction by modulating macrophage polarization. Cardiovasc Res 115:614–624CrossRefGoogle Scholar
  18. 18.
    Cnop M et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wilcox NS et al (2016) Life and death of beta cells in type 1 diabetes: a comprehensive review. J Autoimmun 71:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pugliese A (2016) Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 17(Suppl 22):31–36CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yu XY et al (2011) Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: macrophage migration inhibitory factor. PLoS One 6(1):e16239CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Younce CW, Wang K, Kolattukudy PE (2010) Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res 87(4):665–674CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grundy SM (2016) Metabolic syndrome update. Trends Cardiovasc Med 26(4):364–373CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Devaraj S, Jialal I (2000) Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in type 2 diabetic patients with and without macrovascular complications: the effect of alpha-tocopherol supplementation. Circulation 102(2):191–196CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Frieler RA, Mortensen RM (2015) Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131(11):1019–1030CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 116(7):1254–1268CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Devaraj S et al (2006) Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55(3):774–779CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Volz HC et al (2010) HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 105(6):805–820CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yan SF et al (2003) Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93(12):1159–1169CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59(1):249–255CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rojas A et al (2013) The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 25(3):609–614CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Devaraj S et al (2008) Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93(2):578–583CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mano Y et al (2011) Overexpression of human C-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy. Circ J 75(7):1717–1727CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pradhan AD et al (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Matsumoto K et al (2001) Serum concentrations of soluble vascular cell adhesion molecule-1 and E-selectin are elevated in insulin-resistant patients with type 2 diabetes. Diabetes Care 24(9):1697–1698CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fasching P, Waldhausl W, Wagner OF (1996) Elevated circulating adhesion molecules in NIDDM--potential mediators in diabetic macroangiopathy. Diabetologia 39(10):1242–1244CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang W et al (2015) Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc 4(6):e001993CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hofmann MA et al (1999) Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-kappaB. Diabetologia 42(2):222–232CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13(1):11–22CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118(11):1808–1829CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thomas CM et al (2014) Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 307(7):H1036–H1045CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pan Y et al (2014) Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes 63(10):3497–3511CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kaneto H et al (2004) Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud 1(4):165–174CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li G et al (2007) Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology 148(7):3356–3363CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Donath MY et al (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 81(8):455–470CrossRefGoogle Scholar
  47. 47.
    Frati G et al (2017) An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113(4):378–388CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nishida K, Otsu K (2017) Inflammation and metabolic cardiomyopathy. Cardiovasc Res 113(4):389–398CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Westermann D et al (2007) Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56(3):641–646CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Luo B et al (2017) NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol 8:519CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119(1):159–176CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Monnerat G et al (2016) Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat Commun 7:13344CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mishra PK et al (2017) Diabetic cardiomyopathy: an immunometabolic perspective. Front Endocrinol (Lausanne) 8:72CrossRefGoogle Scholar
  55. 55.
    Mishra PK et al (2009) MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13(4):778–789CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tyagi AC, Sen U, Mishra PK (2011) Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Curr Diabetes Rev 7(6):367–376CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang Y et al (2017) Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev 38(2):145–168CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93(4):583–593CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liang YZ et al (2018) Identification of stress-related microRNA biomarkers in type 2 diabetes mellitus: a systematic review and meta-analysis. J DiabetesGoogle Scholar
  60. 60.
    Zhang Y et al (2016) Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFbeta1 and miR-29 pathways. Sci Rep 6:23010CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Brennan E et al (2017) Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes 66(8):2266–2277CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Williams LJ, Nye BG, Wende AR (2017) Diabetes-related cardiac dysfunction. Endocrinol Metab (Seoul) 32(2):171–179CrossRefGoogle Scholar
  64. 64.
    Mao XM et al (2009) Independent anti-inflammatory effect of insulin in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev 25(5):435–441CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Paneni F, Luscher TF (2017) Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am J Med 130(6S):S18–S29CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gundewar S et al (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104(3):403–411CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Xie Z et al (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60(6):1770–1778CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Caballero AE et al (2004) The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab 89(8):3943–3948CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27(8):657–669CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pollack RM et al (2016) Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care 39(Suppl 2):S244–S252CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shekelle PG et al (2003) Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol 41(9):1529–1538CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zaman AK et al (2004) Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 37(2):525–535CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sahebkar A et al (2016) Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol 81(5):807–818CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Palazzuoli A et al (2018) Clinical impact of oral antidiabetic medications in heart failure patients. Heart Fail Rev 23(3):325–335CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kumar R, Kerins DM, Walther T (2016) Cardiovascular safety of anti-diabetic drugs. Eur Heart J Cardiovasc Pharmacother 2(1):32–43CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Reddy MA et al (2014) Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 63(12):4249–4261CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Assmann TS et al (2017) MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect 6(8):773–790CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ventriglia G et al (2015) MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int 2015:749734CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sebastiani G et al (2015) MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52(3):523–530CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lew JK et al (2017) Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 16(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Nandi SS et al (2016) Lack of miR-133a decreases contractility of diabetic hearts: a role for novel cross talk between tyrosine aminotransferase and tyrosine hydroxylase. Diabetes 65(10):3075–3090CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Guo R, Nair S (2017) Role of microRNA in diabetic cardiomyopathy: from mechanism to intervention. Biochim Biophys Acta Mol basis Dis 1863(8):2070–2077CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Moura J, Borsheim E, Carvalho E (2014) The role of microRNAs in diabetic complications-special emphasis on wound healing. Genes (Basel) 5(4):926–956CrossRefGoogle Scholar
  84. 84.
    Younk LM, Lamos EM, Davis SN (2016) Cardiovascular effects of anti-diabetes drugs. Expert Opin Drug Saf 15(9):1239–1257CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Brown NJ (2012) Cardiovascular effects of antidiabetic agents: focus on blood pressure effects of incretin-based therapies. J Am Soc Hypertens 6(3):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Rosano GM, Vitale C, Seferovic P (2017) Heart failure in patients with diabetes mellitus. Card Fail Rev 3(1):52–55CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Standl E, Schnell O, McGuire DK (2016) Heart failure considerations of Antihyperglycemic medications for type 2 diabetes. Circ Res 118(11):1830–1843CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zheng SL et al (2018) Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA 319(15):1580–1591CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    El Masri D, Ghosh S, Jaber LA (2018) Safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 137:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Okopień B et al (2005) Monocyte suppressing action of fenofibrate. Pharmacol Rep 57(3):367–372PubMedPubMedCentralGoogle Scholar
  91. 91.
    Sakoda K et al (2006) Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res 85(6):520–523CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Henrich D et al (2007) High dosage of simvastatin reduces TNF-α-induced apoptosis of endothelial progenitor cells but fails to prevent apoptosis induced by IL-1β in vitro. J Surg Res 142(1):13–19CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tsutamoto T et al (2000) Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 35(3):714–721CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Trevelyan J et al (2004) Effect of enalapril and losartan on cytokines in patients with stable angina pectoris awaiting coronary artery bypass grafting and their interaction with polymorphisms in the interleukin-6 gene. Am J Cardiol 94(5):564–569CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Andrzejczak D, Górska D, Czarnecka EJPrP (2007) Influence of enalapril, quinapril and losartan on lipopolysaccharide (LPS)-induced serum concentrations of TNF-alpha, IL-1 beta, IL-6 in spontaneously hypertensive rats (SHR). Pharmacol Rep 59(4):437–446PubMedPubMedCentralGoogle Scholar
  96. 96.
    Polyzos SA, Kountouras J, Zavos C (2010) Adiponectin as a potential therapeutic agent for nonalcoholic steatohepatitis. Hepatol Res 40(4):446–447CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Luan Z et al (2003) Statins inhibit secretion of metalloproteinases-1,-2,-3, and-9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 23(5):769–775CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rosenson RS, Tangney CC, Casey LC (1999) Inhibition of proinflammatory cytokine production by pravastatin. Lancet 353(9157):983–984CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Sun Y et al (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23(11):1270CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Sonkoly E, Ståhle M, Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. In: Seminars in cancer biology. Elsevier, LondonGoogle Scholar
  101. 101.
    Boesch-Saadatmandi C et al (2011) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 22(3):293–299CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Huang L et al (2016) MicroRNA-223 promotes tumor progression in lung cancer A549 cells via activation of the NF-κB signaling pathway. Oncol Res 24(6):405–413CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Curtale G et al (2013) Negative regulation of toll-like receptor 4 signaling by IL-10–dependent microRNA-146b. Proc Natl Acad Sci U S A 110(28):11499–11504CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Puthanveetil P et al (2015) Long non-coding RNA MALAT 1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19(6):1418–1425CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Atianand MK et al (2016) A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165(7):1672–1685CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Rapicavoli NA et al (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. elife 2:e00762CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhao G et al (2016) The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett 590(17):2884–2895CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Fitzgerald KA, Caffrey DR (2014) Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol 26:140–146CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Du M et al (2017) The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat Commun 8(1):2049CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Cui H et al (2014) The human long noncoding RNA lnc-IL 7 R regulates the inflammatory response. Eur J Immunol 44(7):2085–2095CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Santosh K. Yadav
    • 1
  • Tyler N. Kambis
    • 1
  • Paras K. Mishra
    • 1
    • 2
    Email author
  1. 1.Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations