Oxidative Stress and Labile Zinc in Heart Dysfunction Under Hyperglycemia

  • Belma TuranEmail author


Three major biological roles of zinc (as Zn2+) in several proteins and enzymes, including the catalytic, structural and regulatory, brings Zn2+ to be an important signaling molecule. Zn2+ mediates many vital physiological processes in mammalian cells, including normal cellular growth, synthesis of DNA, and stability of membranes. Since Zn2+ has hydrophilic property, its direct passive diffusion does not possible through cell membranes. Transportation of Zn2+ in both directions through the cell membrane, therefore, needs special transport systems such as specific Zn2+-transporters, besides others binding or sensing Zn2+. Although recent studies focused on the biological role of free (labile) Zn2+ ([Zn2+]i), its functional role in cardiomyocytes, at the cellular level, is not completely understood. Having a strong relation with cellular [Ca2+]i, the [Zn2+]i in cardiomyocytes found to be increased markedly under both hyperglycemia and oxidative stress. Recently, several important data pointed out the vital role of cellular well-controlled [Zn2+]i through Zn2+-transporters in cardiomyocytes Zn2+ signaling by Zn2+-transporters in normal heart function. Furthermore, those studies emphasized how any alteration in Zn2+ signaling due to changes in either [Zn2+]i and/or function of Zn2+-transporters can underline the development of pathological conditions in the heart. Taken into consideration the importance of Zn2+-transporters in the regulation of [Zn2+]i in cardiomyocytes, the present review focused on documentation of the present and recent data on the hypothesis of possible relations between high [Zn2+]i and oxidative stress in heart dysfunction under hyperglycemia.


Left ventricle Reactive oxygen species Reactive nitrogen species Zinc ion Zinc-transporters Heart failure Hyperglycemia Diabetes 


  1. 1.
    King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21(9):1414–1431CrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053CrossRefGoogle Scholar
  3. 3.
    Halanych JH, Safford MM, Keys WC, Person SD, Shikany JM, Kim YI, Centor RM, Allison JJ (2007) Burden of comorbid medical conditions and quality of diabetes care. Diabetes Care 30(12):2999–3004. CrossRefPubMedGoogle Scholar
  4. 4.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14. CrossRefPubMedGoogle Scholar
  5. 5.
    Stovring H, Andersen M, Beck-Nielsen H, Green A, Vach W (2003) Rising prevalence of diabetes: evidence from a Danish pharmaco-epidemiological database. Lancet 362(9383):537–538. CrossRefPubMedGoogle Scholar
  6. 6.
    Huo X, Gao L, Guo L, Xu W, Wang W, Zhi X, Li L, Ren Y, Qi X, Sun Z, Li W, Ji Q, Ran X, Su B, Hao C, Lu J, Guo X, Zhuo H, Zhang D, Pan C, Weng J, Hu D, Yang X, Ji L (2016) Risk of non-fatal cardiovascular diseases in early-onset versus late-onset type 2 diabetes in China: a cross-sectional study. Lancet Diabetes Endocrinol 4(2):115–124. CrossRefPubMedGoogle Scholar
  7. 7.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602CrossRefGoogle Scholar
  8. 8.
    Monesi L, Baviera M, Marzona I, Avanzini F, Monesi G, Nobili A, Tettamanti M, Cortesi L, Riva E, Fortino I, Bortolotti A, Fontana G, Merlino L, Roncaglioni MC (2012) Prevalence, incidence and mortality of diagnosed diabetes: evidence from an Italian population-based study. Diabet Med 29(3):385–392. CrossRefPubMedGoogle Scholar
  9. 9.
    Jung HH, Park JI, Jeong JS (2017) Incidence of diabetes and its mortality according to body mass index in South Koreans aged 40–79 years. Clin Epidemiol 9:667–678. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tuncay E, Bitirim CV, Olgar Y, Durak A, Rutter GA, Turan B (2018) Zn(2+)-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion.
  11. 11.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605. CrossRefPubMedGoogle Scholar
  12. 12.
    Fox CS, Coady S, Sorlie PD, D’Agostino RB Sr, Pencina MJ, Vasan RS, Meigs JB, Levy D, Savage PJ (2007) Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham heart study. Circulation 115(12):1544–1550. CrossRefPubMedGoogle Scholar
  13. 13.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223. CrossRefPubMedGoogle Scholar
  14. 14.
    Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B, Schulz R (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155(8):1174–1184. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54(11):3082–3088CrossRefGoogle Scholar
  16. 16.
    Tuncay E, Okatan EN, Vassort G, Turan B (2013) ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 8(7):e71014. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tuncay E, Okatan EN, Toy A, Turan B (2014) Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxidative Med Cell Longev 2014:290381. CrossRefGoogle Scholar
  18. 18.
    Tuncay E, Turan B (2016) Intracellular Zn(2+) increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res 169(2):294–302. CrossRefPubMedGoogle Scholar
  19. 19.
    Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9CrossRefGoogle Scholar
  21. 21.
    Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89(3):634–642. CrossRefPubMedGoogle Scholar
  22. 22.
    Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Phys 272(5 Pt 2):H2095–H2106Google Scholar
  23. 23.
    Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270(6):2473–2477CrossRefGoogle Scholar
  24. 24.
    Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176. [pii]CrossRefPubMedGoogle Scholar
  25. 25.
    Vassort G, Turan B (2010) Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol 10(2):73–86. CrossRefPubMedGoogle Scholar
  26. 26.
    Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP (2007) Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation 115(7):909–917. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3):798–805CrossRefGoogle Scholar
  28. 28.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625CrossRefGoogle Scholar
  29. 29.
    Oliveira PJ, Seica R, Coxito PM, Rolo AP, Palmeira CM, Santos MS, Moreno AJ (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett 554(3):511–514CrossRefGoogle Scholar
  30. 30.
    Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278(36):33972–33977. CrossRefPubMedGoogle Scholar
  31. 31.
    Marra G, Cotroneo P, Pitocco D, Manto A, Di Leo MA, Ruotolo V, Caputo S, Giardina B, Ghirlanda G, Santini SA (2002) Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: a case for gender difference. Diabetes Care 25(2):370–375CrossRefGoogle Scholar
  32. 32.
    Stockklauser-Farber K, Ballhausen T, Laufer A, Rosen P (2000) Influence of diabetes on cardiac nitric oxide synthase expression and activity. Biochim Biophys Acta 1535(1):10–20CrossRefGoogle Scholar
  33. 33.
    Pierce GN, Russell JC (1997) Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 34(1):41–47CrossRefGoogle Scholar
  34. 34.
    Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, Schulz R, Turan B (2010) Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 21(9):827–833. CrossRefPubMedGoogle Scholar
  35. 35.
    Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 426(1):83–90. CrossRefPubMedGoogle Scholar
  36. 36.
    Shah AM, Channon KM (2004) Free radicals and redox signalling in cardiovascular disease. Heart 90(5):486–487CrossRefGoogle Scholar
  37. 37.
    Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944CrossRefGoogle Scholar
  38. 38.
    Finkel T (1999) Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 65(3):337–340CrossRefGoogle Scholar
  39. 39.
    Gao WD, Liu Y, Marban E (1996) Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 94(10):2597–2604CrossRefGoogle Scholar
  40. 40.
    Schilling JD (2015) The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxid Redox Signal 22(17):1515–1526. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34CrossRefGoogle Scholar
  42. 42.
    Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273(29):18092–18098CrossRefGoogle Scholar
  43. 43.
    Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69(2):450–458. CrossRefPubMedGoogle Scholar
  44. 44.
    Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5(6):338–349. CrossRefPubMedGoogle Scholar
  45. 45.
    Ceriello A (2008) Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 31(Suppl 2):S181–S184. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ayaz M, Can B, Ozdemir S, Turan B (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89(3):215–226CrossRefGoogle Scholar
  48. 48.
    Ozdemir S, Ugur M, Gurdal H, Turan B (2005) Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 435(1):166–174. CrossRefPubMedGoogle Scholar
  49. 49.
    Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Phys Heart Circ Phys 283(4):H1398–H1408. CrossRefGoogle Scholar
  50. 50.
    Ishikawa T, Kajiwara H, Kurihara S (1999) Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium. Am J Phys 277(6 Pt 2):H2185–H2194Google Scholar
  51. 51.
    Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Phys 272(1 Pt 2):H148–H158. CrossRefGoogle Scholar
  52. 52.
    Bidasee KR, Nallani K, Besch HR Jr, Dincer UD (2003) Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther 305(3):989–998. CrossRefPubMedGoogle Scholar
  53. 53.
    Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55(3):608–615CrossRefGoogle Scholar
  54. 54.
    Yaras N, Tuncay E, Purali N, Sahinoglu B, Vassort G, Turan B (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Phys Heart Circ Phys 293(6):H3584–H3592. CrossRefGoogle Scholar
  55. 55.
    Zhang L, Cannell MB, Phillips AR, Cooper GJ, Ward ML (2008) Altered calcium homeostasis does not explain the contractile deficit of diabetic cardiomyopathy. Diabetes 57(8):2158–2166. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hertelendi Z, Toth A, Borbely A, Galajda Z, van der Velden J, Stienen GJ, Edes I, Papp Z (2008) Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid Redox Signal 10(7):1175–1184. CrossRefGoogle Scholar
  57. 57.
    Turan B, Desilets M, Acan LN, Hotomaroglu O, Vannier C, Vassort G (1996) Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc Res 32(2):351–361CrossRefGoogle Scholar
  58. 58.
    Vallee BL, Auld DS (1992) Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss 93:47–65CrossRefGoogle Scholar
  59. 59.
    Degirmenci S, Olgar Y, Durak A, Tuncay E, Turan B (2018) Cytosolic increased labile Zn(2+) contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. J Trace Elem Med Biol 48:202–212. CrossRefPubMedGoogle Scholar
  60. 60.
    Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409(6822):832–833. CrossRefPubMedGoogle Scholar
  61. 61.
    Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. CrossRefPubMedGoogle Scholar
  62. 62.
    Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65CrossRefGoogle Scholar
  63. 63.
    Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM (2007) Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem 282(33):24373–24380. CrossRefPubMedGoogle Scholar
  64. 64.
    Song Y, Wang J, Li XK, Cai L (2005) Zinc and the diabetic heart. Biometals : an international journal on the role of metal ions in biology. Biochem Med 18(4):325–332. CrossRefGoogle Scholar
  65. 65.
    Lin CL, Tseng HC, Chen RF, Chen WP, Su MJ, Fang KM, Wu ML (2011) Intracellular zinc release-activated ERK-dependent GSK-3beta-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ 18(10):1651–1663. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mato S, Sanchez-Gomez MV, Bernal-Chico A, Matute C (2013) Cytosolic zinc accumulation contributes to excitotoxic oligodendroglial death. Glia 61(5):750–764. CrossRefPubMedGoogle Scholar
  67. 67.
    Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18. CrossRefPubMedGoogle Scholar
  68. 68.
    Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA (2003) Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 22(4):316–321CrossRefGoogle Scholar
  69. 69.
    Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SS (2012) Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 53(8):1595–1606. CrossRefPubMedGoogle Scholar
  70. 70.
    Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37(8):1182–1190. CrossRefPubMedGoogle Scholar
  71. 71.
    Song Y, Wang J, Li Y, Du Y, Arteel GE, Saari JT, Kang YJ, Cai L (2005) Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 167(1):17–26. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ali MM, Frei E, Straub J, Breuer A, Wiessler M (2002) Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179(1–2):85–93CrossRefGoogle Scholar
  73. 73.
    Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L (2006) Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113(4):544–554. CrossRefPubMedGoogle Scholar
  74. 74.
    Efeovbokhan N, Bhattacharya SK, Ahokas RA, Sun Y, Guntaka RV, Gerling IC, Weber KT (2014) Zinc and the prooxidant heart failure phenotype. J Cardiovasc Pharmacol 64(4):393–400. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Eide DJ (2000) Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 43:1–38CrossRefGoogle Scholar
  76. 76.
    Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172. CrossRefPubMedGoogle Scholar
  77. 77.
    Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20(4):284–292. CrossRefPubMedGoogle Scholar
  78. 78.
    Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci U S A 98(5):2317–2322. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. CrossRefPubMedGoogle Scholar
  80. 80.
    Kambe T, Matsunaga M, Takeda TA (2017) Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int J Mol Sci 18(10):pii: E2179. CrossRefGoogle Scholar
  81. 81.
    Turan B, Tuncay E (2017) Impact of labile zinc on heart function: from physiology to pathophysiology. Int J Mol Sci 18(11):pii: E2395. CrossRefGoogle Scholar
  82. 82.
    Fukada T, Kambe T (2018) Welcome to the world of zinc signaling. Int J Mol Sci 19(3).
  83. 83.
    Beharier O, Etzion Y, Levi S, Mor M, Mor M, Dror S, Kahn J, Katz A, Moran A (2010) The involvement of ZnT-1, a new modulator of cardiac L-type calcium channels, in [corrected] atrial tachycardia remodeling. [corrected]. Ann N Y Acad Sci 1188:87–95. CrossRefPubMedGoogle Scholar
  84. 84.
    Zhao L, Oliver E, Maratou K, Atanur SS, Dubois OD, Cotroneo E, Chen CN, Wang L, Arce C, Chabosseau PL, Ponsa-Cobas J, Frid MG, Moyon B, Webster Z, Aldashev A, Ferrer J, Rutter GA, Stenmark KR, Aitman TJ, Wilkins MR (2015) The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature 524(7565):356–360. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tepaamorndech S, Kirschke CP, Pedersen TL, Keyes WR, Newman JW, Huang L (2016) Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake. FEBS J 283(2):378–394. CrossRefPubMedGoogle Scholar
  86. 86.
    Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn(2+) release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66(5):1346–1358. CrossRefPubMedGoogle Scholar
  87. 87.
    Lin W, Vann DR, Doulias PT, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, Rader DJ (2017) Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest 127(6):2407–2417. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Olgar Y, Durak A, Tuncay E, Bitirim CV, Ozcinar E, Inan MB, Tokcaer-Keskin Z, Akcali KC, Akar AR, Turan B (2018) Increased free Zn(2+) correlates induction of sarco(endo)plasmic reticulum stress via altered expression levels of Zn(2+) -transporters in heart failure. J Cell Mol Med 22(3):1944–1956. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lin W, Li D, Cheng L, Li L, Liu F, Hand NJ, Epstein JA, Rader DJ (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Invest 128(2):826–833. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Huang L, Tepaamorndech S, Kirschke CP, Newman JW, Keyes WR, Pedersen TL, Dumnil J (2018) Aberrant fatty acid metabolism in skeletal muscle contributes to insulin resistance in zinc transporter 7 (znt7)-knockout mice. J Biol Chem 293(20):7549–7563. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A, Gitler D, Moran A (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284(47):32434–32443. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447(5):744–751. CrossRefPubMedGoogle Scholar
  93. 93.
    Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17(17):6678–6684CrossRefGoogle Scholar
  94. 94.
    Mor M, Beharier O, Levy S, Kahn J, Dror S, Blumenthal D, Gheber LA, Peretz A, Katz A, Moran A, Etzion Y (2012) ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Phys Cell Physiol 303(2):C192–C203. CrossRefGoogle Scholar
  95. 95.
    Beharier O, Dror S, Levy S, Kahn J, Mor M, Etzion S, Gitler D, Katz A, Muslin AJ, Moran A, Etzion Y (2012) ZnT-1 protects HL-1 cells from simulated ischemia-reperfusion through activation of Ras-ERK signaling. J Mol Med 90(2):127–138. CrossRefPubMedGoogle Scholar
  96. 96.
    Shusterman E, Beharier O, Shiri L, Zarivach R, Etzion Y, Campbell CR, Lee IH, Okabayashi K, Dinudom A, Cook DI, Katz A, Moran A (2014) ZnT-1 extrudes zinc from mammalian cells functioning as a Zn(2+)/H(+) exchanger. Metallomics Integr Biometal Sci 6(9):1656–1663. CrossRefGoogle Scholar
  97. 97.
    Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M (2013) Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 13(3):401–409PubMedPubMedCentralGoogle Scholar
  98. 98.
    Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278(6):4096–4102. CrossRefPubMedGoogle Scholar
  99. 99.
    Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166(3):325–335. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280(15):15456–15463. CrossRefPubMedGoogle Scholar
  101. 101.
    Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149(10):4912–4920. CrossRefPubMedGoogle Scholar
  102. 102.
    Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15(3):101–111. CrossRefPubMedGoogle Scholar
  103. 103.
    Tuncay E, Bitirim VC, Durak A, Carrat GR, Taylor K, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the Sarco(endo)plasmic reticulum and mediate ER-stress in the heart. Diabetes 66(5):1346–1358. CrossRefPubMedGoogle Scholar
  104. 104.
    Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461CrossRefGoogle Scholar
  105. 105.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013) Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127(1):143–152. CrossRefPubMedGoogle Scholar
  106. 106.
    Dhalla NS, Takeda S, Elimban V (2013) Mechanisms of the beneficial effects of vitamin B6 and pyridoxal 5-phosphate on cardiac performance in ischemic heart disease. Clin Chem Lab Med 51(3):535–543. CrossRefPubMedGoogle Scholar
  107. 107.
    Malaiyandi LM, Dineley KE, Reynolds IJ (2004) Divergent consequences arise from metallothionein overexpression in astrocytes: zinc buffering and oxidant-induced zinc release. Glia 45(4):346–353. CrossRefPubMedGoogle Scholar
  108. 108.
    Ayaz M, Turan B (2006) Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Phys Heart Circ Phys 290(3):H1071–H1080. CrossRefGoogle Scholar
  109. 109.
    Billur D, Tuncay E, Okatan EN, Olgar Y, Durak AT, Degirmenci S, Can B, Turan B (2016) Interplay between cytosolic free Zn2+ and mitochondrion morphological changes in rat ventricular cardiomyocytes. Biol Trace Elem Res 174(1):177–188. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biophysics, Faculty of MedicineAnkara UniversityAnkaraTurkey

Personalised recommendations