Advertisement

Role of Oxidative Stress and Cardiovascular Risk Factors in Ischemic Heart Disease

  • Monika BartekovaEmail author
  • Kristina Ferenczyova
  • Marek Jelemensky
  • Naranjan S Dhalla
Chapter

Abstract

Ischemic heart disease (IHD) is a major cause of mortality and disability and is the most common type of cardiovascular disease (CVD). Reduced myocardial perfusion by obstruction in coronary arteries due to progressive accumulation of fibrotic material/plaque in the vessel wall leads to the development of IHD. Cardiovascular risk factors such as atherosclerosis, hypertension and thrombosis promote the occurrence of oxidative stress and thus widely contribute to the genesis of tissue necrosis and ischemia-reperfusion (I/R) injury to the heart. Furthermore, the production of reactive oxygen species (ROS) during myocardial ischemia results in subcellular abnormalities and cardiac dysfunction. Particularly, ROS produced by NADPH oxidases, xanthine oxidase, mitochondrial cytochromes and uncoupled nitric oxide synthase have been documented to affect vasculature and play a role in the occurrence of atherosclerosis, thrombosis and hypertension. Accordingly, inhibition of ROS-producing enzymes as well as mitochondrial reverse electron transport can be seen to normalize endothelial vascular function and prevent the development of cardiovascular risk factors for IHD. This article is intended to describe the mechanisms of oxidative stress-induced changes involved atherosclerosis, thrombosis and hypertension, and to summarize the contribution of ROS in the genesis of cardiac dysfunction due to I/R injury.

Keywords

Reactive oxygen species (ROS) Oxidative stress Ischemia-reperfusion (I/R) injury Cardiovascular risk factors Hypertension Atherosclerosis Thrombosis 

Notes

Acknowledgements

The infrastructure support for this project was provided by the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

References

  1. 1.
    Dhalla NS, Saini HK, Tappia PS et al (2007) Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med 8(4):238–250CrossRefGoogle Scholar
  2. 2.
    Bartekova M, Barancik M, Dhalla NS (2016) Role of oxidative stress in subcellular defects in ischemic heart disease. In: Gelpi RJ, Boveris A, Paderosa JJ (eds) Biochemistry of oxidative stress: physiopathology and clinical aspects, Advances in biochemistry in health and disease, vol 16. Springer, Cham, pp 129–146CrossRefGoogle Scholar
  3. 3.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673CrossRefGoogle Scholar
  4. 4.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47(3):446–456CrossRefGoogle Scholar
  5. 5.
    Ceconi C, Cargnoni A, Pasini E et al (1991) Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury. Am J Phys 260:H1057–H1061Google Scholar
  6. 6.
    Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31(5):631–641.  https://doi.org/10.1016/j.cjca.2015.02.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Dinh QN, Drummond GR, Sobey CG, Chrissobolis S (2014) Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:406960.  https://doi.org/10.1155/2014/406960 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sinha N, Dabla PK (2015) Oxidative stress and antioxidants in hypertension – a current review. Curr Hypertens Rev 11(2):132–142CrossRefGoogle Scholar
  9. 9.
    Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237(1):208–219.  https://doi.org/10.1016/j.atherosclerosis.2014.09.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Yang X, Li Y, Li Y et al (2017) Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol 8:600.  https://doi.org/10.3389/fphys.2017.00600. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Majzunova M, Dovinova I, Barancik M, Chan JY (2013) Redox signaling in pathophysiology of hypertension. Biomed Sci 20:69CrossRefGoogle Scholar
  12. 12.
    Freedman JE (2008) Oxidative stress and platelets. Arterioscler Thromb Vasc Biol 28(3):s11–s16.  https://doi.org/10.1161/ATVBAHA.107.159178 CrossRefPubMedGoogle Scholar
  13. 13.
    Müller BA, Dhalla NS (2010) Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr Cardiol Rev 6(4):255–264CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function: role of nitric oxide synthase uncoupling and NOX family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110(1):87–94CrossRefPubMedGoogle Scholar
  15. 15.
    Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14(10):1769–1775.  https://doi.org/10.1089/ars.2011.3904 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62(5):365–383CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606CrossRefGoogle Scholar
  18. 18.
    Chen Q, Camara AK, Stowe DF et al (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292(1):C137–C147CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McLeod CJ, Aziz A, Hoyt RF Jr et al (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280(39):33470–33476CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776CrossRefPubMedGoogle Scholar
  21. 21.
    Pierdomenico SD, Di Nicola M, Esposito AL et al (2009) Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens 22(8):842–847.  https://doi.org/10.1038/ajh.2009.103 CrossRefPubMedGoogle Scholar
  22. 22.
    Brito R, Castillo G, González J, Valls N, Rodrigo R (2015) Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes 123(6):325–335.  https://doi.org/10.1055/s-0035-1548765 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rajagopalan S, Kurz S, Münzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS (2005) Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther 315(3):1058–1064CrossRefPubMedGoogle Scholar
  25. 25.
    Dikalova A, Clempus R, Lassègue B et al (2005) NOX1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112(17):2668–2676CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Matsuno K, Yamada H, Iwata K et al (2005) NOX1 is involved in angiotensin II-mediated hypertension: a study in NOX1-deficient mice. Circulation 112(17):2677–2685CrossRefPubMedGoogle Scholar
  27. 27.
    Murdoch CE, Alom-Ruiz SP, Wang M et al (2011) Role of endothelial NOX2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106(4):527–538.  https://doi.org/10.1007/s00395-011-0179-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nazarewicz RR, Dikalova AE, Bikineyeva A, Dikalov SI (2013) NOX2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am J Physiol Heart Circ Physiol 305(8):H1131–H1140.  https://doi.org/10.1152/ajpheart.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee DY, Wauquier F, Eid AA et al (2013) NOX4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 288(40):28668–28686.  https://doi.org/10.1074/jbc.M113.470971 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dikalov SI, Nazarewicz RR, Bikineyeva A et al (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20(2):281–294.  https://doi.org/10.1089/ars.2012.4918 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Montezano AC, Touyz RM (2012) Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies. Ann Med 44(Suppl 1):S2–S16.  https://doi.org/10.3109/07853890.2011.653393 CrossRefPubMedGoogle Scholar
  32. 32.
    García-Redondo AB, Aguado A, Briones AM, Salaices M (2016) NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 114:110–120.  https://doi.org/10.1016/j.phrs.2016.10.015 CrossRefPubMedGoogle Scholar
  33. 33.
    Daiber A, Di Lisa F, Oelze M et al (2017) Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 174(12):1670–1689.  https://doi.org/10.1111/bph.13403 CrossRefPubMedGoogle Scholar
  34. 34.
    Landmesser U, Spiekermann S, Preuss C et al (2007) Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 27(4):943–948CrossRefGoogle Scholar
  35. 35.
    DeLano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schönbein GW (2006) Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. Microcirculation 13(7):551–566CrossRefGoogle Scholar
  36. 36.
    Laakso J, Mervaala E, Himberg JJ et al (1998) Increased kidney xanthine oxidoreductase activity in salt-induced experimental hypertension. Hypertension 32(5):902–906CrossRefGoogle Scholar
  37. 37.
    Laakso JT, Teräväinen TL, Martelin E, Vaskonen T, Lapatto R (2004) Renal xanthine oxidoreductase activity during development of hypertension in spontaneously hypertensive rats. J Hypertens 22(7):1333–1340CrossRefGoogle Scholar
  38. 38.
    Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464CrossRefGoogle Scholar
  39. 39.
    Chan SH, Wu KL, Chang AY, Tai MH, Chan JY (2009) Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension 53:217–227CrossRefGoogle Scholar
  40. 40.
    Postnov IUV (2001) The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkh Patol 63:3–10PubMedGoogle Scholar
  41. 41.
    Siasos G, Tsigkou V, Kosmopoulos M et al (2018) Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med 6(12):256.  https://doi.org/10.21037/atm.2018.06.21 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cogliati S, Frezza C, Soriano ME et al (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155(1):160–171.  https://doi.org/10.1016/j.cell.2013.08.032 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rimbaud S, Ruiz M, Piquereau J et al (2011) Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One 6(10):e26391.  https://doi.org/10.1371/journal.pone.0026391 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Walther T, Tschöpe C, Sterner-Kock A et al (2007) Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation 115(3):333–344CrossRefGoogle Scholar
  45. 45.
    Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292(4):H1812–H1820CrossRefGoogle Scholar
  46. 46.
    Silberman GA, Fan TH, Liu H et al (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121(4):519–528.  https://doi.org/10.1161/CIRCULATIONAHA.109.883777 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Higashi Y, Sasaki S, Nakagawa K et al (2002) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15(4 Pt 1):326–332CrossRefGoogle Scholar
  48. 48.
    Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Schulz E, Wenzel P, Munzel T, Daiber A (2014) Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 20:308–324CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Badimón L, Vilahur G, Padró T (2009) Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol 62(10):1161–1178CrossRefGoogle Scholar
  51. 51.
    Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR (2015) Nutrition and atherosclerosis. Arch Med Res 46(5):408–426.  https://doi.org/10.1016/j.arcmed.2015.05.010 CrossRefPubMedGoogle Scholar
  52. 52.
    Victor VM, Rocha M, Solá E, Bañuls C, Garcia-Malpartida K, Hernández-Mijares A (2009) Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des 15(26):2988–3002CrossRefGoogle Scholar
  53. 53.
    Kita T, Kume N, Minami M et al (2001) Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci 947:199–205CrossRefGoogle Scholar
  54. 54.
    Skålén K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890):750–754CrossRefGoogle Scholar
  55. 55.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661CrossRefGoogle Scholar
  57. 57.
    Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501CrossRefGoogle Scholar
  58. 58.
    Sorescu D, Weiss D, Lassègue B et al (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105:1429–1435CrossRefGoogle Scholar
  59. 59.
    Lee S, Gharavi NM, Honda H et al (2009) A role for NADPH oxidase 4 in the activation of vascular endothelial cells by oxidized phospholipids. Free Radic Biol Med 47:145–151CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275:3278–3289.  https://doi.org/10.1111/j.1742-4658.2008.06489.x CrossRefPubMedGoogle Scholar
  61. 61.
    McNally JS, Davis ME, Giddens DP et al (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297.  https://doi.org/10.1152/ajpheart.00515.2003 CrossRefPubMedGoogle Scholar
  62. 62.
    Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551.  https://doi.org/10.1172/JCI116491 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    White CR, Darley-Usmar V, Berrington WR et al (1996) Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A 93:8745–8749CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Patetsios P, Song M, Shutze WP et al (2001) Identifiation of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol 88:188–191CrossRefGoogle Scholar
  65. 65.
    Guzik TJ, Sadowski J, Guzik B et al (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339.  https://doi.org/10.1161/01.ATV.0000196651.64776.51 CrossRefGoogle Scholar
  66. 66.
    Schröder K, Vecchione C, Jung O et al (2006) Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free Radic Biol Med 41:1353–1360.  https://doi.org/10.1016/j.freeradbiomed.2006.03.026 CrossRefPubMedGoogle Scholar
  67. 67.
    Nomura J, Busso N, Ives A et al (2014) Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep 4:4554.  https://doi.org/10.1038/srep04554 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang Y, Wang GZ, Rabinovitch PS, Tabas I (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflmmation in macrophages. Circ Res 114:421–433.  https://doi.org/10.1161/CIRCRESAHA.114.302153 CrossRefPubMedGoogle Scholar
  69. 69.
    Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275:169–180CrossRefGoogle Scholar
  70. 70.
    Nojiri H, Shimizu T, Funakoshi M et al (2006) Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 281:33789–33801.  https://doi.org/10.1074/jbc.M602118200 CrossRefPubMedGoogle Scholar
  71. 71.
    Ballinger SW, Patterson C, Knight-Lozano CA et al (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106:544–549CrossRefGoogle Scholar
  72. 72.
    Li H, Förstermann U (2009) Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des 15:3133–3145CrossRefGoogle Scholar
  73. 73.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837.  https://doi.org/10.1093/eurheartj/ehr304 CrossRefPubMedGoogle Scholar
  74. 74.
    Li H, Förstermann U (2013) Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol 13:161–167.  https://doi.org/10.1016/j.coph.2013.01.006 CrossRefPubMedGoogle Scholar
  75. 75.
    Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714.  https://doi.org/10.1161/CIRCULATIONAHA.105.602532 CrossRefPubMedGoogle Scholar
  76. 76.
    Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTPcyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24:445–450.  https://doi.org/10.1161/01.ATV.0000115637.48689.77 CrossRefPubMedGoogle Scholar
  77. 77.
    Antoniades C, Shirodaria C, Crabtree M et al (2007) Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation 116:2851–2859.  https://doi.org/10.1161/CIRCULATIONAHA.107.704155 CrossRefPubMedGoogle Scholar
  78. 78.
    Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949.  https://doi.org/10.1056/NEJMra0801082 CrossRefPubMedGoogle Scholar
  79. 79.
    Kumar V (2015) Robbins and Cotran pathologic basis of disease. Elsevier, Philadelphia, pp 122–130. ISBN 978-1-4557-2613-2614Google Scholar
  80. 80.
    Ito T, Kakihana Y, Maruyama I (2016) Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets 20(2):151–158.  https://doi.org/10.1517/14728222.2016.1086750 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Handin RI, Karabin R, Boxer GJ (1977) Enhancement of platelet function by superoxide anion. J Clin Invest 59:959–965CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wachowicz B, Olas B, Zbikowska HM, Buczynski A (2002) Generation of reactive oxygen species in blood platelets. Platelets 13(3):175–182CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Stokes KY, Russell JM, Jennings MH, Alexander JS, Granger DN (2007) Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic Biol Med 43:22–30CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Fuentes E, Gibbins JM, Holbrook LM, Palomo I (2018) NADPH oxidase 2 (NOX2): a key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc Med. pii: S1050-1738(18)30044–6.  https://doi.org/10.1016/j.tcm.2018.03.001. [Epub ahead of print]
  85. 85.
    Delaney MK, Kim K, Estevez B et al (2016) Differential roles of the NADPH – oxidase 1 and 2 in platelet activation and thrombosis. Arterioscler Thromb Vasc Biol 36(5):846–854CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Seno T, Inoue N, Gao D et al (2001) Involvement of NADH/NADPH oxidase in human platelet ROS production. Thromb Res 103(5):399–409CrossRefGoogle Scholar
  87. 87.
    Brandt M, Giokoglu E, Garlapati V et al (2018) Pulmonary arterial hypertension and endothelial dysfunction is linked to NADPH oxidase-derived superoxide formation in venous thrombosis and pulmonary embolism in mice. Oxidative Med Cell Longev 2018:1860513.  https://doi.org/10.1155/2018/1860513. eCollection 2018CrossRefGoogle Scholar
  88. 88.
    Krötz F, Sohn HY, Gloe T et al (2002) NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 100(3):917–924CrossRefGoogle Scholar
  89. 89.
    Violi F, Pignatelli P (2014) Platelet NOX, a novel target for anti-thrombotic treatment. Thromb Haemost 111(5):817–823.  https://doi.org/10.1160/TH13-10-0818 CrossRefPubMedGoogle Scholar
  90. 90.
    Carnevale R, Iuliano L, Nocella C et al (2013) Relationship between platelet and urinary 8-Iso-PGF2alpha levels in subjects with different degrees of NOX2 regulation. J Am Heart Assoc 2(3):e000198CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Begonja AJ, Gambaryan S, Geiger J et al (2005) Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood 106:2757–2760CrossRefPubMedGoogle Scholar
  92. 92.
    Begonja AJ, Teichmann L, Geiger J, Gambaryan S, Walter U (2006) Platelet regulation by NO/cGMP signaling and NAD(P)H oxidase-generated ROS. Blood Cells Mol Dis 36(2):166–170CrossRefPubMedGoogle Scholar
  93. 93.
    Lopez JJ, Salido GM, Go’mez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291CrossRefPubMedGoogle Scholar
  94. 94.
    Wang Z, Cai F, Chen X, Luo M, Hu L, Lu Y (2013) The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 8(9):e75044.  https://doi.org/10.1371/journal.pone.0075044. eCollection 2013CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Navarro-Yepes J, Burns M, Anandhan A et al (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21(1):66–85.  https://doi.org/10.1089/ars.2014.5837 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lucchesi BR (1990) Myocardial ischemia, reperfusion and free radical injury. Am J Cardiol 65(19):14–23.  https://doi.org/10.1016/0002-9149(90)90120-P CrossRefGoogle Scholar
  97. 97.
    Kurian GA, Rajagopal R, Vedantham S, Rajesh M (2016) The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxidative Med Cell Longev 2016:1656450.  https://doi.org/10.1155/2016/1656450 CrossRefGoogle Scholar
  98. 98.
    Tanaka-Esposito C, Chen Q, Lesnefsky EJ (2012) Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res 160(3):207–216.  https://doi.org/10.1016/j.trsl.2012.01.024 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286(1):135–141CrossRefPubMedGoogle Scholar
  100. 100.
    Makazan Z, Saini HK, Dhalla NS (2007) Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 292(4):H1986–H1994CrossRefPubMedGoogle Scholar
  101. 101.
    Müller AL, Hryshko LV, Dhalla NS (2013) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 164(1):39–47CrossRefPubMedGoogle Scholar
  102. 102.
    Netticadan T, Temsah R, Osada M, Dhalla NS (1999) Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Phys 277:C384–C391CrossRefGoogle Scholar
  103. 103.
    Steinberg SF (2013) Oxidative stress and sarcomeric proteins. Circ Res 112(2):393–405CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sinning C, Westermann D, Clemmensen P (2017) Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark Med 11(11):11031–11040.  https://doi.org/10.2217/bmm-2017-0110 CrossRefPubMedGoogle Scholar
  105. 105.
    Chen Z, Siu B, Ho YS et al (1998) Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30(11):2281–2289CrossRefGoogle Scholar
  106. 106.
    Woo YJ, Zhang JC, Vijayasarathy C et al (1998) Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 98:II 255–II 261Google Scholar
  107. 107.
    Barteková M, Šimončíková P, Fogarassyová M et al (2015) Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int J Mol Sci 16(4):8168–8185CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Cheng L, Jin Z, Zhao R et al (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420–10428PubMedPubMedCentralGoogle Scholar
  109. 109.
    Sun G, Li Y, Ji Z (2015) Atorvastatin attenuates inflammation and oxidative stress induced by ischemia/reperfusion in rat heart via the Nrf2 transcription factor. Int J Clin Exp Med 8(9):14837–14845PubMedPubMedCentralGoogle Scholar
  110. 110.
    Qu D, Han J, Ren H et al (2016) Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart. Oxidative Med Cell Longev 2016:8194690Google Scholar
  111. 111.
    Das DK, Engelman RM, Kimura Y (1993) Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc Res 27:578–584CrossRefGoogle Scholar
  112. 112.
    Hoshida S, Kuzuya T, Fuji H et al (1993) Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Phys 264:H33–H39Google Scholar
  113. 113.
    Brosková Z, Drábiková K, Sotníková R et al (2013) Effect of plant polyphenols on ischemia-reperfusion injury of the isolated rat heart and vessels. Phytother Res 27(7):1018–1022CrossRefGoogle Scholar
  114. 114.
    Li W, Wu M, Tang L et al (2015) Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol Appl Pharmacol 282(2):175–183CrossRefGoogle Scholar
  115. 115.
    Sethi R, Takeda N, Nagano M, Dhalla NS (2000) Beneficial effects of vitamin E treatment in acute myocardial infarction. J Cardiovasc Pharmacol Ther 5(1):51–58CrossRefGoogle Scholar
  116. 116.
    Bartekova M, Barancik M, Ferenczyova K, Dhalla NS (2018) Beneficial effects of N-acetylcysteine and N-mercaptopropionylglycine on ischemia reperfusion injury in the heart. Curr Med Chem 25(3):355–366.  https://doi.org/10.2174/0929867324666170608111917 CrossRefPubMedGoogle Scholar
  117. 117.
    Stone PH, Lloyd-Jones DM, Kinlay S et al (2005) Effect of intensive lipid lowering, with or without antioxidant vitamins, compared with moderate lipid lowering on myocardial ischemia in patients with stable coronary artery disease: the vascular basis for the treatment of myocardial ischemia study. Circulation 111(14):1747–1755CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Monika Bartekova
    • 1
    Email author
  • Kristina Ferenczyova
    • 1
  • Marek Jelemensky
    • 1
  • Naranjan S Dhalla
    • 2
  1. 1.Institute for Heart Research, Centre of Experimental MedicineSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations