Advertisement

Redox Aspects of Myocardial Ischemia/Reperfusion Injury and Cardioprotection

  • Pasquale PagliaroEmail author
  • Saveria Femminò
  • Claudia Penna
Chapter

Abstract

In this chapter we discuss about the oxidative signaling, which plays a fundamental role in cardiovascular physiology regulation, and the oxidative stress, which plays a pivotal role in several cardiovascular pathophysiological mechanisms. We first consider oxidative- or redox-signaling and compare it with oxidative- or redox-stress from a biochemical point of view. The biochemistry of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is considered. Several sources of ROS/RNS are described, but emphasis is given to mitochondria, as these organelles are important sources of ROS, especially in the heart, where they represent about 40% of the cellular volume. Mitochondrial transition pores are considered major factors of life or death. Nitric oxide generation and its reaction with ROS is described in the details for the fundamental role of this gas in several physiological and pathological mechanisms. The beneficial and deleterious role of ROS/RNS in the cardiovascular field are considered in the light of their effect as either conditioning agents or damaging agents in ischemia/reperfusion scenario. The role of nitric oxide, nitration and nitrosylation in cardioprotection and redox regulation of transcription in cardioprotection are finally discussed. An appropriate knowledge of ROS/RNS biochemistry is essential for a better understanding of these molecules in the cardiovascular patho-physiology.

Notes

Acknowledgments

The authors of this chapter are supported for their researches by University of Turin, Italy.

References

  1. 1.
    Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carpi A, Menabò R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M (2009) The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 1787:774–780CrossRefGoogle Scholar
  3. 3.
    Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F (2014) Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 73:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69CrossRefGoogle Scholar
  5. 5.
    Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Donko A, Péterfi Z, Sum A, Leto T, Geiszt M (2005) Dual oxidases. Trans R Soc Lond B Biol Sci 360:2301–2308CrossRefGoogle Scholar
  8. 8.
    Martin KD, Frederick LM, vonLoehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82CrossRefGoogle Scholar
  9. 9.
    Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:677–683CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Byrne JA, Grieve DJ, Cave AC, Shah AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96:214–221PubMedPubMedCentralGoogle Scholar
  11. 11.
    Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ (2014) NADPH oxidases in vascular pathology. Antioxid Redox Signal 20:2794–2814CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988) L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 153:1251–1256CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stamler JS, Single D, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gow AJ, McClelland M, Garner SE, Malcolm S, Ischiropoulos H (1998) The determination of nitrotyrosine residues in proteins. Methods Mol Biol 100:291–299PubMedPubMedCentralGoogle Scholar
  17. 17.
    Penna C, Angotti C, Pagliaro P (2014) Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 239:647–662CrossRefGoogle Scholar
  18. 18.
    Fukuto JM, Cisneros CJ, Kinkade RL (2013) A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO). J Inorg Biochem 118:201–208CrossRefGoogle Scholar
  19. 19.
    Lacza Z, Pankotai E, Csordás A, Gero D, Kiss L, Horváth EM, Kollai M, Busija DW, Szabó C (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14:162–168CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Csordás A, Pankotai E, Snipes JA, Cselenyák A, Sárszegi Z, Cziráki A, Gaszner B, Papp L, Benko R, Kiss L, Kovács E, Kollai M, Szabó C, Busija DW, Lacza Z (2007) Human heart mitochondria do not produce physiologically relevant quantities of nitric oxide. Life Sci 80:633–637CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zaobornyj T, Ghafourifar P (2012) Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol 303:H1283–H1293CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bolli R, Dawn B, Tang XL, Qiu Y, Ping P, Xuan YT, Jones WK, Takano H, Guo Y, Zhang J (1998) The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 93:325–338CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guo Y, Sanganalmath SK, Wu W, Zhu X, Huang Y, Tan W, Ildstad ST, Li Q, Bolli R (2012) Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 107:253CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300:H2308–H2315CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zimmet JM, Hare JM (2006) Nitroso-redox interactions in the cardiovascular system. Circulation 114:1531–1544CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res 77:256–264CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sarkela TM, Berthiaume J, Elfering S, Gybina AA, Giulivi C (2011) The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 276:6945–6949CrossRefGoogle Scholar
  29. 29.
    Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503CrossRefGoogle Scholar
  30. 30.
    Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808CrossRefGoogle Scholar
  31. 31.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299:H673–H679CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1:804–809CrossRefGoogle Scholar
  34. 34.
    Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, Ognibene FP, Cannon RO (2000) Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A 97:11482–11487CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Samouilov A, Kuppusamy P, Zweier JL (1998) Evaluation of the magnitude and rate of nitric oxide production from nitrite in biological systems. Arch Biochem Biophys 357:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283:17855–17863CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A (2006) Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun 341:816–821CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE (2007) Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci 64:96–103CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tota B, Quintieri AM, Angelone T (2010) The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function. Curr Med Chem 17:1915–1925CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Omar SA, Webb AJ (2014) Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol 73:57–69CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maia LB, Moura JJ (2015) Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 20:403–433CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pacher P, Liaudet L, Bai P, Mabley JG, Kaminski PM, Virág L, Deb A, Szabó E, Ungvári Z, Wolin MS, Groves JT, Szabó C (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107:896–904CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pacher P, Schulz R, Liaudet L, Szabó C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814CrossRefGoogle Scholar
  45. 45.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Valko M, Leibfritz D, Moncola J, Cronin MD, Mazur MJ (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Whaley-Connell A, McCullough PA, Sowers JR (2011) The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med 12:21–29PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tullio F, Angotti C, Perrelli MG, Penna C, Pagliaro P (2013) Redox balance and cardioprotection. Basic Res Cardio 108:392CrossRefGoogle Scholar
  50. 50.
    Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91Google Scholar
  52. 52.
    Davies KJA (2018) Cardiovascular adaptive homeostasis in exercise. Front Physiol 9:369CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sag CM, Wagner S, Maier LS (2013) Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 63:338–349CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tocchetti CG, Molinaro M, Angelone T, Lionetti V, Madonna R, Mangiacapra F, Moccia F, Penna C, Sartiani L, Quaini F, Pagliaro P (2015) Nitroso-redox balance and modulation of basal myocardial function: an update from the Italian Society of Cardiovascular Research (SIRC). Curr Drug Targets 16:895–903CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Orr WC, Sohal RS (2003) Does overexpression of Cu, Zn-SOD extend life span in Drosophila melanogaster? Exp Gerontol 38:227–230CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Garlid AO, Jaburek M, Jacobs JP, Garlid KD (2013) Mitochondrial reactive oxygen species: which ROS signals cardioprotection? Am J Physiol Heart Circ Physiol 305:H960–H968CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bencsik P, Kupai K, Giricz Z, Görbe A, Pipis J, Murlasits Z, Kocsis GF, Varga-Orvos Z, Puskás LG, Csonka C, Csont T, Ferdinandy P (2010) Role of iNOS and peroxynitrite-matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats. Am J Physiol Heart Circ Physiol 299:H512–H518CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vallance P, Moncada S (1993) Role of endogenous nitric oxide in septic shock. New Horiz 1:77–86PubMedPubMedCentralGoogle Scholar
  60. 60.
    Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81:779–793CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016:1245049PubMedPubMedCentralGoogle Scholar
  63. 63.
    Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621CrossRefGoogle Scholar
  64. 64.
    Saitoh S, Kiyooka T, Rocic P, Rogers PA, Zhang C, Swafford A, Dick GM, Viswanathan C, Park Y, Chilian WM (2007) Redox-dependent coronary metabolic dilation. Am J Physiol Heart Circ Physiol 293:H3720–H3725CrossRefGoogle Scholar
  65. 65.
    Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 24:547–553CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Russo I, Penna C, Musso T, Popara J, Alloatti G, Cavalot F, Pagliaro P (2017) Platelets, diabetes and myocardial ischemia/reperfusion injury. Cardiovasc Diabetol 16:71CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Golstein P, Kroemer G (2007) A multiplicity of cell death pathways. Symposium on apoptotic and non-apoptotic cell death pathways. EMBO Rep 8:829–833CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:7–43CrossRefGoogle Scholar
  74. 74.
    Basso E, Petronilli V, Forte MA, Bernardi P (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 283:26307–26311CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Piper HM, Abdallah Y, Schäfer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bernardi P, Krauskopf A, Basso E, Petronilli V, BlalchyDyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ (2005) Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 3:1035–1045CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Takagi H, Matsui Y, Sadoshima J (2007) The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 9:1373–1381CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Przyklenk K, Dong Y, Undyala VV, Whittaker P (2012) Autophagy as a therapeutic target for ischemia-reperfusion injury? Concepts, controversies and challenges. Cardiovasc Res 94:197–205CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sheldon JG, Williams SP, Fulton AM, Brindle KM (1996) 31P NMR magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:6399–6404CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 277:2773–2778CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Roussel D, Harding M, Runswick MJ, Walker JE, Brand MD (2002) Does any yeast mitochondrial carrier have a native uncoupling protein function? J Bioenerg Biomembr 34:165–176CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112:1831–1842CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Downey JM, Cohen MV (2006) Reducing infarct size in the setting of acute myocardial infarction. Prog Cardiovasc Dis 48:363–371CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal 14:821–831CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82:723–738CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bolli R (1991) Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc Drugs Ther 5:249–268CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Bolli R (1992) Myocardial ‘stunning’ in man. Circulation 86:1671–1691CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Singal PK, Khaper N, Palace V, Kumar D (1998) The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 40:426–432CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R (2004) Delayed adaptation of the heart to stress: late preconditioning. Stroke 35:2676–2679CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40:16–23CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Riess ML, Camara AK, Novalija E, Chen Q, Rhodes SS, Stowe DF (2002) Anesthetic preconditioning attenuates mitochondrial Ca2+ overload during ischemia in Guinea pig intact hearts: reversal by 5-hydroxydecanoic acid. Anesth Analg 95:1540–1546CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kevin LG, Camara AK, Riess ML, Novalija E, Stowe DF (2003) Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284:H566–H574CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Murry CE, Jennings R, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Penna C, Granata R, Tocchetti CG, Gallo MP, Alloatti G, Pagliaro P (2015) Endogenous cardioprotective agents: role in pre and postconditioning. Curr Drug Targets 16:843–867CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588. Erratum in: Am J Physiol Heart Circ Physiol 286:H477CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Skyschally A, Van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907CrossRefGoogle Scholar
  105. 105.
    Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM (1992) Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exp Ther 260:668–675PubMedPubMedCentralGoogle Scholar
  106. 106.
    Hill M, Takano H, Tang XL, Kodani E, Shirk G, Bolli R (2001) Nitroglycerin induces late preconditioning against myocardial infarction in conscious rabbits despite development of nitrate tolerance. Circulation 104:694–699CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Iliodromitis EK, Gaitanaki C, Lazou A, Aggeli IK, Gizas V, Bofilis E, Zoga A, Beis I, Kremastinos DT (2006) Differential activation of mitogen-activated protein kinases in ischemic and nitroglycerin-induced preconditioning. Basic Res Cardiol 101:327–335CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Garcia-Dorado D, Agulló L, Sartorio CL, Ruiz-Meana M (2009) Myocardial protection against reperfusion injury: the cGMP pathway. Thromb Haemost 101:635–642CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Hausenloy DJ, Yellon DM (2008) Preconditioning and postconditioning: new strategies for cardioprotection. Diabetes Obes Metab 10:451–459CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hausenloy DJ (2009) Signalling pathways in ischaemic postconditioning. Thromb Haemost 101:626–634CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Lecour S (2009) Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN, Murphy E (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286:40184–40192CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001) Ischemic preconditioning: from the first to the second window of protection. Life Sci 69:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Crisafulli A, Melis F, Tocco F, Pittau G, Lorrai L, Gori T, Mancardi D, Concu A, Pagliaro P (2007) Delayed preconditioning-mimetic actions of exercise or nitroglycerin do not affect haemodynamics and exercise performance in trained or sedentary individuals. J Sports Sci 25:1393–1401CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Hausenloy DJ, Yellon DM (2010) The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther 24:235–254CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 70:200–211CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Working Group of Cellular Biology of Heart of European Society of Cardiology. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Yang X, Cohen MV, Downey JM (2010) Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 24:225–234CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Carroll R, Gant VA, Yellon DM (2001) Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Bell RM, Yellon DM (2001) The contribution of endothelial nitric oxide synthase to early ischaemic preconditioning: the lowering of the preconditioning threshold. An investigation in eNOS knockout mice. Cardiovasc Res 52:274–280CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33:1897–1918CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD, Cohen MV, Downey JM (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286:H468–H476CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Guo Y, Li Q, Wu WJ, Tan W, Zhu X, Mu J, Bolli R (2008) Endothelial nitric oxide synthase is not necessary for the early phase of ischemic preconditioning in the mouse. J Mol Cell Cardiol 44:496–501CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Simon JN, Duglan D, Casadei B, Carnicer R (2014) Nitric oxide synthase regulation of cardiac excitation-contraction coupling in health and disease. J Mol Cell Cardiol 73:80–91CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Sun J, Aponte AM, Kohr MJ, Tong G, Steenbergen C, Murphy E (2013) Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Free Radic Biol Med 54:105–112CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetic and calcium transport. Circ Res 101:1155–1163CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Sun J, Kohr MJ, Nguyen T, Aponte AM, Connelly PS, Esfahani SG, Gucek M, Daniels MP, Steenbergen C, Murphy E (2012) Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal 16:45–56CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Kohr MJ, Sun J, Aponte A, Wang G, Gucek M, Murphy E, Steenbergen C (2011) Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res 108:418–426CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Angelone T, Quintieri A, Pasqua T, Gentile S, Tota B, Mahata SK, Cerra MC (2012) Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol Heart Circ Physiol 302:H431–H442CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Foster DB, O’Rourke B, Van Eyk JE (2008) What can mitochondrial proteomics tell us about cardioprotection afforded by preconditioning? Expert Rev Proteomics 5:633–636CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Nadtochiy SM, Burwell LS, Brookes PS (2007) Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 42:812–825CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Galkin A, Moncada S (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282:37448–37453CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106(2):285–296CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Boengler K, Bencsik P, Palóczi J, Kiss K, Pipicz M, Pipis J, Ferdinandy P, Schlüter KD, Schulz R (2017) Lack of contribution of p66shc and its mitochondrial translocation to ischemia-reperfusion injury and cardioprotection by ischemic preconditioning. Front Physiol 8:733CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Penna C, Pagliaro P, Rastaldo R, Di Pancrazio F, Lippe G, Gattullo D, Mancardi D, Samaja M, Losano G, Mavelli I (2004) F0F1 ATP synthase activity is differently modulated by coronary reactive hyperemia before and after ischemic preconditioning in the goat. Am J Physiol Heart Circ Physiol 287:H2192–H2200CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100:654–661CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 111:10580–10585CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    He J, Carroll J, Ding S, Fearnley IM, Walker JE (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc Natl Acad Sci USA 114:9086–9091CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE (2017) Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci USA 114:3409–3414CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2011) Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal 14:833–850CrossRefGoogle Scholar
  154. 154.
    Feng X, Sun T, Bei Y, Ding S, Zheng W, Lu Y, Shen P (2013) S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep 3:1814CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Filice E, Angelone T, De Francesco EM, Pellegrino D, Maggiolini M, Cerra MC (2011) Crucial role of phospholamban phosphorylation and S-nitrosylation in the negative lusitropism induced by 17β-estradiol in the male rat heart. Cell Physiol Biochem 28:41–52CrossRefGoogle Scholar
  156. 156.
    Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189CrossRefGoogle Scholar
  157. 157.
    Downey JM, Cohen MV (2006) A really radical observation – a comment on Penna et al. in Basic Res Cardiol (2006) 101:180–189. Basic Res Cardiol 101:190–191Google Scholar
  158. 158.
    Inserte J, Barba I, Poncelas-Nozal M, Hernando V, Agulló L, Ruiz-Meana M, Garcia-Dorado D (2011) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909CrossRefGoogle Scholar
  159. 159.
    Penna C Perrelli MG, Tullio F, Moro F, Parisella ML, Merlino A, Pagliaro P (2011) Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation. Pflugers Arch 462:219–233. Erratum in: Pflugers Arch. 2014 Dec;466:2339–2341CrossRefGoogle Scholar
  160. 160.
    Valen G, Vaage J (2005) Pre- and postconditioning during cardiac surgery. Basic Res Cardiol 100:179–186CrossRefGoogle Scholar
  161. 161.
    Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221CrossRefGoogle Scholar
  162. 162.
    Tissier R, Waintraub X, Couvreur N, Gervais M, Bruneval P, Mandet C, Zini R, Enriquez B, Berdeaux A, Ghaleh B (2007) Pharmacological postconditioning with the phytoestrogen genistein. J Mol Cell Cardiol 42:79–87CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Schulz R, Ferdinandy P (2013) Does nitric oxide signaling differ in pre- and post-conditioning? Importance of S-nitrosylation vs. protein kinase G activation. Free Radic Biol Med 54:113–115CrossRefGoogle Scholar
  164. 164.
    Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J (2014) Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 306:H825–H832CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Wang SB, Foster DB, Rucker J, O’Rourke B, Kass DA, Van Eyk JE (2011) Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res 109:750–757CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Saini HK, Machackova J, Dhalla NS (2004) Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal 6:393–404CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O’Rourke B (2012) Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 111:446–454CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Hausenloy DJ, Erik Bøtker H, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, Lecour S, van Laake LW, Madonna R, Ruiz-Meana M, Schulz R, Sluijter JP, Yellon DM, Ovize M (2013) Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 98:7–27CrossRefGoogle Scholar
  169. 169.
    Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M, Garcia-Dorado D (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2:e005975CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais de W, Csont T, Ferdinandy P (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297:H1729–H1735CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Sánchez JA, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Fernández-Sanz C, Ruiz-Meana M, Alburquerque-Béjar JJ, García-Dorado D (2013) Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 108:351CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP (2007) Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282:14708–14718CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Methner C, Lukowski R, Grube K, Loga F, Smith RA, Murphy MP, Hofmann F, Krieg T (2013) Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res Cardiol 108:337CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Zhang Y, Sano M, Shinmura K, Tamaki K, Katsumata Y, Matsuhashi T, Morizane S, Ito H, Hishiki T, Endo J, Zhou H, Yuasa S, Kaneda R, Suematsu M, Fukuda K (2010) 4-hydroxy-2-nonenal protects against cardiac ischemiareperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol 49:576–586CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Støttrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RI, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Günther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H (2012) Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15:361–371CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Katsumata Y, Shinmura K, Sugiura Y, Tohyama S, Matsuhashi T, Ito H, Yan X, Ito K, Yuasa S, Ieda M, Urade Y, Suematsu M, Fukuda K, Sano M (2014) Endogenous prostaglandin D2 and its metabolites protect the heart against ischemia-reperfusion injury by activating Nrf2. Hypertension 63:80–87CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Yu H, Shi L, Zhao S, Sun Y, Gao Y, Sun Y, Qi G (2016) Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc Toxicol 16:325–335CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Farias JG, Carrasco-Pozo C, Carrasco R, Loza R, Sepulveda N, Alvarez P, Quezada M, Quinones J, Molina V, Castillo RL (2017) Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NFkappaB and induction of Nrf2. Exp Biol Med 242:1104–1114CrossRefGoogle Scholar
  180. 180.
    Xu B, Zhang J, Strom J, Lee S, Chen QM (2014) Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta 1842:1638–1647CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Anedda A, Lopez-Bernardo E, Acosta-Iborra B, Saadeh Suleiman M, Landazuri MO, Cadenas S (2013) The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic Biol Med 61C:395–407CrossRefGoogle Scholar
  182. 182.
    Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, Sanchez JA, Otani H, Maulik G, Fong GH, Maulik N (2011) Disruption of hypoxiainducible transcription factor-prolyl hydroxylase domain-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor- 1alpha transcription factor and its target genes in mice. Antioxid Redox Signal 15:1789–1797CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pasquale Pagliaro
    • 1
    Email author
  • Saveria Femminò
    • 1
  • Claudia Penna
    • 1
  1. 1.Department of Clinical and Biological SciencesUniversity of TorinoTorinoItaly

Personalised recommendations