Oxidative Stress in Cardiac Remodeling Post-Ischemia/Reperfusion: Friend or Foe?

  • Emna Abidi
  • Abdullah Kaplan
  • George W. Booz
  • Fouad A. Zouein


Acute coronary artery disease remains the leading cause of death in the USA and most westernized cultures. Notwithstanding the promising pharmacological and interventional advances in the treatment of ischemic heart and vascular diseases in the last three decades, the World Health Organization (WHO) estimates that 17.7 million people die yearly from cardiovascular diseases (CVD), representing 31% of all deaths worldwide. More than 75% of CVD deaths, among which 80% are due to heart attacks and strokes, occur in low-income and middle-income countries. Reperfusion following myocardial infarction (MI) is a gold standard intervention that is proven to be highly effective in preventing heart failure development and death. However, reactive oxygen species (ROS) mediated myocardial injury following reperfusion has gained immense attention given its adverse prognostic value. This chapter discusses the mechanisms behind reperfusion induced cardiac injury while focusing on myocardial ROS types, sources and adverse effect. It also highlights the successful mito-targeted antioxidant therapy and touches base on the paradoxal cardioprotective effects of ROS, all within the context of myocardial ischemia/reperfusion (I/R).



World Health Organization


Cardiovascular disease




Reactive Oxygen Species


Ischemia Reperfusion


Ischemia-Reperfusion Injury


Myocardial Infarction


Coronary Heart Disease


Percutaneous Coronary Intervention


Coronary Artery Bypass Grafting


Adenosine triphosphate




Mitochondrial Permeability Transition Pore


Hydrogen ion




Protein Kinase C delta


Protein Kinase C epsilon


poly (ADP-ribose) polymerase


Superoxide anion


Xanthine oxidase


Nicotinamide Adenine Dinucleotide Phosphate


Oxidase Synthase




neuronal NOS


endothelial NOS


inducible NOS


Nitric Oxide






hydrogen peroxide


Electron Transport Chain


Xanthine dehydrogenase


Interleukine 1


Interleukine 6


Tumor Necrosis Factor alpha


Polymorphonuclear Lukocytes


Hypoxia-inducible factor 1-alpha


Mitochondrial Inner Membrane


Manganese Superoxide Dismutase


Hydrogen peroxide


Mitogen-activated Protein Kinases


Rapidly Accelerated Fibrosarcoma- Mitogen-activated protein kinase kinase pathway


PI-3 kinase


High-mobility box 1


Toll-Like Receptors


Nuclear factor kappa-light-chain-enhancer of activated B cells


Protein Kinase A


Protein kinase B


B-cell lymphoma 2


Matrix metalloproteinases


Big Potassium channels


Mitochondrial ATP-sensitive K+ channel


  1. 1.
    Raedschelders K, Ansley DM, Chen DD (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 133(2):230–255CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T (eds) (2012) Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Seminars in cardiothoracic and vascular anesthesia. SAGE, Los AngelesGoogle Scholar
  3. 3.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56(5):786–794CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hearse D, Humphrey S, Chain E (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5(4):395–407CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guarnieri C, Flamigni F, Caldarera C (1980) Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 12(8):797–808CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81(1):22–29CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Davidson SM, Yellon DM, Murphy MP, Duchen MR (2011) Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 93(3):445–453CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5(4):1841–1875CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Spann JF Jr, Moellering RC Jr, Haber E, Wheeler EO (1964) Arrhythmias in acute myocardial infarction: a study utilizing an electrocardiographic monitor for automatic detection and recording of arrhythmias. N Engl J Med 271(9):427–431CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bajaj A, Sethi A, Rathor P, Suppogu N, Sethi A (2015) Acute complications of myocardial infarction in the current era: diagnosis and management. J Investig Med 63(7):844–855CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics-2018 Update: a report from the American Heart Association. Circulation 137(12):e67–e492CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Puymirat E, Simon T, Cayla G, Cottin Y, Elbaz M, Coste P et al (2017) Acute myocardial infarction: changes in patient characteristics, management, and 6-month outcomes over a period of 20 years in the FAST-MI program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation 136(20):1908–1919CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ashraf M, Enthammer M, Haller M, Koziel K, Hermann M, Troppmair J (2012) Intracellular signaling in ischemia/reperfusion injury (IRI): from mechanistic insights to therapeutic options. J Transplant Technol Res 3:002Google Scholar
  17. 17.
    Liu T, O’Rourke B (2013) Regulation of Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J Biol Chem M113:496588Google Scholar
  18. 18.
    Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA, Dedkova EN (2015) Distinct mPTP activation mechanisms in ischaemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res 106(2):237–248CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Avkiran M, Marber MS (2002) Na+/H+ exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J Am Coll Cardiol 39(5):747–753CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou T, Chuang CC, Zuo L (2015) Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int 2015:864946PubMedPubMedCentralGoogle Scholar
  21. 21.
    Monti M, Donnini S, Giachetti A, Mochly-Rosen D, Ziche M (2010) δPKC inhibition or ɛPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification. J Mol Cell Cardiol 48(4):746–756CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vina J, Borras C, Abdelaziz KM, Garcia-Valles R, Gomez-Cabrera MC (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 19(8):779–787CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13CrossRefGoogle Scholar
  25. 25.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C et al (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 23(2):254–263CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    VanTeeffelen JW (2008) How to prevent leaky vessels during reperfusion? Just keep that glycocalyx sealant in place! Critical care (London, England) 12(4):167CrossRefGoogle Scholar
  29. 29.
    Slegtenhorst BR, Dor FJ, Rodriguez H, Voskuil FJ, Tullius SG (2014) Ischemia/reperfusion injury and its consequences on immunity and inflammation. Curr Transplant Rep 1(3):147–154CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61(3):481–497CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Perkins K-AA, Pershad S, Chen Q, McGraw S, Adams JS, Zambrano C et al (2012) The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). Naunyn Schmiedeberg’s Arch Pharmacol 385(1):27–38CrossRefGoogle Scholar
  32. 32.
    Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13):1708–1714CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416(6878):337–339CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Oess S, Icking A, Fulton D, Govers R, Muller-Esterl W (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396(3):401–409CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Paulus WJ, Bronzwaer JG (2002) Myocardial contractile effects of nitric oxide. Heart Fail Rev 7(4):371–383CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch – Eur J Physiol 459(6):793–806CrossRefGoogle Scholar
  37. 37.
    Godinez-Rubi M, Rojas-Mayorquin AE, Ortuno-Sahagun D (2013) Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxidative Med Cell Longev 2013:297357CrossRefGoogle Scholar
  38. 38.
    Roberts BW, Mitchell J, Kilgannon JH, Chansky ME, Trzeciak S (2013) Nitric oxide donor agents for the treatment of ischemia/reperfusion injury in human subjects: a systematic review. Shock (Augusta, Ga) 39(3):229–239CrossRefGoogle Scholar
  39. 39.
    Chen W, Druhan LJ, Chen CA, Hemann C, Chen YR, Berka V et al (2010) Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Biochemistry 49(14):3129–3137CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang Y, Tocchetti CG, Krieg T, Moens AL (2012) Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 53(8):1531–1540CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Alkaitis MS, Crabtree MJ (2012) Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Failure Rep 9(3):200–210CrossRefGoogle Scholar
  42. 42.
    Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S et al (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 284(2):1136–1144CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    De Pascali F, Hemann C, Samons K, Chen C-A, Zweier JL (2014) Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 53(22):3679–3688CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Siu KL, Lotz C, Ping P, Cai H (2015) Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J Mol Cell Cardiol 78:174–185CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pernow J, Jung C (2013) Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res 98(3):334–343CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL (1997) Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem 272(34):21420–21426CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mialet-Perez J, Bianchi P, Kunduzova O, Parini A (2007) New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. J Neural Transm (Vienna, Austria: 1996) 114(6):823–827CrossRefGoogle Scholar
  48. 48.
    Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C et al (2016) Monoamine oxidase is overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxidative Med Cell Longev 2016:4375418CrossRefGoogle Scholar
  49. 49.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C et al (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122(2):221–233CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5(1):265–272CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang G, Qian P, Jackson FR, Qian G, Wu G (2008) Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol 40(3):461–470CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606CrossRefGoogle Scholar
  53. 53.
    Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol 1:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Maia LB, Pereira V, Mira L, Moura JJ (2015) Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 54(3):685–710CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shafik AN (2013) Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats. Dig Dis Sci 58(3):650–659CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kahles T, Brandes RP (2013) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 18(12):1400–1417CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49(5):687–706CrossRefGoogle Scholar
  58. 58.
    Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100(6):894–903CrossRefGoogle Scholar
  59. 59.
    Lambeth JD, Krause KH, Clark RA (2008) NOX enzymes as novel targets for drug development. Semin Immunopathol 30(3):339–363CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S, Radermacher KA et al (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berlin, Germany) 90(12):1391–1406CrossRefGoogle Scholar
  61. 61.
    Simone S, Rascio F, Castellano G, Divella C, Chieti A, Ditonno P et al (2014) Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free Radic Biol Med 74:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gan X, Su G, Zhao W, Huang P, Luo G, Hei Z (2013) The mechanism of sevoflurane preconditioning-induced protections against small intestinal ischemia reperfusion injury is independent of mast cell in rats. Mediat Inflamm 2013:378703CrossRefGoogle Scholar
  63. 63.
    Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101(3):258–267CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL et al (2015) HIF-1alpha activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 10(3):e0119762CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19(10):1110–1120CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25(1-2):17–26CrossRefGoogle Scholar
  68. 68.
    Drose S, Brandt U (2012) Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145–169CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pasdois P, Parker JE, Griffiths EJ, Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436(2):493–505CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40(6):976–982CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bleier L, Wittig I, Heide H, Steger M, Brandt U, Drose S (2015) Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med 78:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Holzerova E, Prokisch H (2015) Mitochondria: much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol 63:16–20CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Aon MA, Cortassa S, Akar FG, Brown DA, Zhou L, O’Rourke B (2009) From mitochondrial dynamics to arrhythmias. Int J Biochem Cell Biol 41(10):1940–1948CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jena N, Mishra P (2012) Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med 53(1):81–94CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14(2):109–121CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438CrossRefGoogle Scholar
  77. 77.
    Musiek ES, Yin H, Milne GL, Morrow JD (2005) Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40(10):987–994CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Xu X, Muller JG, Ye Y, Burrows CJ (2008) DNA− protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts. J Am Chem Soc 130(2):703–709CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55(11):801–811CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 104(25):3158–3167CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stadtman E, Levine R (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3-4):207–218CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75(2):291–302CrossRefGoogle Scholar
  83. 83.
    Kuznetsov AV, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M et al (2008) Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol 28(7):2304–2313CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lehwald N, Tao GZ, Jang KY, Sorkin M, Knoefel WT, Sylvester KG (2011) Wnt–β-catenin signaling protects against hepatic ischemia and reperfusion injury in mice. Gastroenterology 141(2):707-18. e5CrossRefGoogle Scholar
  85. 85.
    Yu HC, Qin HY, He F, Wang L, Fu W, Liu D et al (2011) Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology 54(3):979–988CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhu Y, Prives C (2009) P53 and metabolism: the GAMT connection. Mol Cell 36(3):351–352CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Brodie C, Blumberg P (2003) Regulation of cell apoptosis by protein kinase c δ. Apoptosis 8(1):19–27CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Cohen MV, Yang X-M, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115(14):1895–1903CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang Z, Feng H-Z, Jin J-P (2011) Structure of the NH2-terminal variable region of cardiac troponin T determines its sensitivity to restrictive cleavage in pathophysiological adaptation. Arch Biochem Biophys 515(1-2):37–45CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-López NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein α-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43(4):429–436CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hernando V, Inserte J, Sartório CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D (2010) Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 49(2):271–279CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Perrelli M-G, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3(6):186–200Google Scholar
  94. 94.
    Perraud A-L, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yang K, Chang W, Yang P, Chien C-L, Lai M, Su M et al (2006) Activation of the transient receptor potential M2 channel and poly (ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 13(10):1815CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2:13CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ong S-B, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta (BBA)-Bioenergetics 1757(5–6):509–517CrossRefGoogle Scholar
  99. 99.
    Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM (2007) H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292(3):H1404–H1411CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Phys 266(3 Pt 2):H1145–H1152Google Scholar
  102. 102.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY et al (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 43(7):1048–1060CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5):H2023–H2031CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Xi Q, Cheranov SY, Jaggar JH (2005) Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 97(4):354–362CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Quindry JC, Hamilton KL (2013) Exercise and cardiac preconditioning against ischemia reperfusion injury. Curr Cardiol Rev 9(3):220–229CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ascensao A, Ferreira R, Magalhaes J (2007) Exercise-induced cardioprotection – biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117(1):16–30CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Frasier CR, Moore RL, Brown DA (2011) Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol (1985) 111(3):905–915CrossRefGoogle Scholar
  109. 109.
    Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14(5):863–880CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ et al (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87(3):406–423CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104(5):469–483CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102(5):445–452CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103(5):464–471CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Rossello X, Yellon DM (2017) The RISK pathway and beyond. Basic Res Cardiol 113(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW (2015) Pivotal importance of STAT3 in protecting the heart from acute and chronic stress: new advancement and unresolved issues. Front Cardiovasc Med 2:36CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Shlafer M, Kane PF, Kirsh MM (1982) Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 83(6):830–839PubMedPubMedCentralGoogle Scholar
  117. 117.
    Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215(2):213–219CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Ambrosio G, Zweier JL, Jacobus WE, Weisfeldt ML, Flaherty JT (1987) Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation 76(4):906–915CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Arroyo CM, Kramer JH, Dickens BF, Weglicki WB (1987) Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett 221(1):101–104CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Arroyo CM, Kramer JH, Leiboff RH, Mergner GW, Dickens BF, Weglicki WB (1987) Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radic Biol Med 3(5):313–316CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest 82(2):476–485CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987) Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 61(5):757–760CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E (1991) Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest 88(3):1014–1025CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL (1991) Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266(4):2354–2361PubMedPubMedCentralGoogle Scholar
  125. 125.
    Xia Y, Zweier JL (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem 270(32):18797–18803CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A 101(37):13683–13688CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Victorino GP, Ramirez RM, Chong TJ, Curran B, Sadjadi J (2008) Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate. Am J Phys Heart Circ Phys 295(5):H2164–H2H71Google Scholar
  128. 128.
    Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P et al (2009) Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 13(8b):2724–2735CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Donoso P, Finkelstein JP, Montecinos L, Said M, Sánchez G, Vittone L et al (2014) Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium. J Mol Cell Cardiol 68:38–46CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Braunersreuther V, Montecucco F, Ashri M, Pelli G, Galan K, Frias M et al (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Dworakowski R, Anilkumar N, Zhang M, Shah A (2006) Redox signalling involving NADPH oxidase-derived reactive oxygen species. Portland Press Limited, LondonCrossRefGoogle Scholar
  132. 132.
    Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S et al (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17(2):145–152CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia–reperfusion damage. Proc Natl Acad Sci 101(37):13683–13688CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL (2004) Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 279(46):47961–47967CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    White MY, Tchen AS, McCarron HC, Hambly BD, Jeremy RW, Cordwell SJ (2006) Proteomics of ischemia and reperfusion injuries in rabbit myocardium with and without intervention by an oxygen-free radical scavenger. Proteomics 6(23):6221–6233CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR et al (2009) Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta 1794(3):476–485CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Zhang L, Chen C-L, Kang PT, Garg V, Hu K, Green-Church KB et al (2010) Peroxynitrite-mediated oxidative modifications of complex II: relevance in myocardial infarction. Biochemistry 49(11):2529–2539CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, León H et al (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77(5):826–834CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Fert-Bober J, Leon H, Sawicka J, Basran RS, Devon RM, Schulz R et al (2008) Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion. Basic Res Cardiol 103(5):431–443CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Leon H, Baczko I, Sawicki G, Light PE, Schulz R (2008) Inhibition of matrix metalloproteinases prevents peroxynitrite-induced contractile dysfunction in the isolated cardiac myocyte. Br J Pharmacol 153(4):676–683CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Jena N, Kushwaha P, Mishra P (2008) Reaction of hypochlorous acid with imidazole: formation of 2-chloro-and 2-oxoimidazoles. J Comput Chem 29(1):98–107CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Shukla P, Jena N, Mishra P (2011) Quantum theoretical study of molecular mechanisms of mutation and cancer-a review. Proc Natl Acad Sci India Sect A-Phys Sci 81:79–98Google Scholar
  143. 143.
    Minko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB et al (2008) Role for DNA polymerase kappa in the processing of N2-N2-guanine interstrand crosslinks. J Biol ChemGoogle Scholar
  144. 144.
    Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD et al (2011) Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta 1813(7):1382–1394CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Sugamura K, Keaney JF Jr (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51(5):978–992CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Xue Y-Z, Wang L-X, Liu H-Z, Qi X-W, Wang X-H, Ren H-Z (2007) L-carnitine as an adjunct therapy to percutaneous coronary intervention for non-ST elevation myocardial infarction. Cardiovasc Drugs Ther 21(6):445–448CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP et al (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Anisimov VN, Egorov MV, Krasilshchikova MS, Lyamzaev KG, Manskikh VN, Moshkin MP et al (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany NY) 3(11):1110CrossRefGoogle Scholar
  149. 149.
    Birk A, Chao W, Bracken C, Warren J, Szeto H (2014) Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol 171(8):2017–2028CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ et al (2012) Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc 1(3):e001644CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Chakrabarti AK, Feeney K, Abueg C, Brown DA, Czyz E, Tendera M et al (2013) Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am Heart J 165(4):509-14. e7CrossRefGoogle Scholar
  152. 152.
    Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T et al (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res 108(7):837–846CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Yeon J-Y, Min S-H, Park H-J, Kim J-W, Lee Y-H, Park S-Y et al (2015) Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs. J Reprod Dev 61(2):81–89CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Qi X, Qvit N, Su Y-C, Mochly-Rosen D (2012) Novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X et al (2013) Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc 2(5):e000461CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Yogalingam G, Hwang S, Ferreira JC, Mochly-Rosen D (2013) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase C delta (δPKC) inhibits mitochondrial elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem M113:466870Google Scholar
  157. 157.
    Kabir AM, Clark JE, Tanno M, Cao X, Hothersall JS, Dashnyam S et al (2006) Cardioprotection initiated by reactive oxygen species is dependent on activation of PKCε. Am J Phys Heart Circ Phys 291(4):H1893–H18H9Google Scholar
  158. 158.
    Budas GR, Churchill EN, Disatnik M-H, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCε is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88(1):83–92CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Heinzel FR, Lisa F (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Badalzadeh R, Yousefi B, Tajaddini A, Ahmadian N (2015) Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial KATP channels in a rat model. Perfusion 30(7):565–571CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Zhao Z, Cui W, Zhang H, Gao H, Li X, Wang Y et al (2015) Pre-treatment of a single high-dose of atorvastatin provided cardioprotection in different ischaemia/reperfusion models via activating mitochondrial KATP channel. Eur J Pharmacol 751:89–98CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Beretta M, Gorren AC, Wenzl MV, Weis R, Russwurm M, Koesling D et al (2009) Characterization of the East Asian variant of aldehyde dehydrogenase-2: bioactivation of nitroglycerin and effects of Alda-1. J Biol Chem M109:014548Google Scholar
  163. 163.
    Gong D, Zhang Y, Zhang H, Gu H, Jiang Q, Hu S (2012) Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia–reperfusion injury. Cardiovasc Toxicol 12(4):350–358CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Gomes KM, Bechara LR, Lima VM, Ribeiro MA, Campos JC, Dourado PM et al (2015) Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1. Int J Cardiol 179:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Ebert AD, Kodo K, Liang P, Wu H, Huber BC, Riegler J et al (2014) Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci Transl Med 6(255):255ra130–255ra130CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of MedicineAmerican University of BeirutBeirutLebanon
  2. 2.Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations