Advertisement

Process Parameters, Product Quality Monitoring, and Control of Powder Bed Fusion

  • Yanhu Wang
  • Xizhang ChenEmail author
  • S. Jayalakshmi
  • R. Arvind Singh
  • Konovalov Sergey
  • Manoj Gupta
Conference paper
Part of the Transactions on Intelligent Welding Manufacturing book series (TRINWM)

Abstract

In recent years, metal additive manufacturing technology has sparked a huge change in industrial sectors. Laser Powder Bed Fusion is a well-known additive manufacturing method for producing metallic components. However, drawbacks such as process reliability and repeatability in terms of material properties of the parts produced limits its widespread use. Research on additive manufacturing is hence focused on monitoring and control of the process. In this review, the currently popular additive manufacturing processes such as Selective Laser Melting and Direct Metal Laser Sintering processes are described. The correlation between process parameters and the product quality for monitoring and process control are discussed.

Keywords

Additive manufacturing Powder bed fusion Process monitoring Process control 

Notes

Acknowledgements

This work is sponsored by the State Agreement (#14.578.21.0228) of Ministry of Education and Science of the Russian Federation (RFMEFI57817X0228).

References

  1. 1.
    Ding D, Pan Z, Cuiuri D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81(1–4):465–481CrossRefGoogle Scholar
  2. 2.
    Hofmann DC, Roberts S, Otis R et al (2014) Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep 4:5357CrossRefGoogle Scholar
  3. 3.
    ASTM I (2015) Standard terminology for additive manufacturing–general principles–terminologyGoogle Scholar
  4. 4.
    Lott P, Schleifenbaum H, Meiners W et al (2011) Design of an optical system for the in situ process monitoring of selective laser melting (SLM). Phys Procedia 12:683–690CrossRefGoogle Scholar
  5. 5.
    Raghavan A, Wei HL, Palmer TA et al (2013) Heat transfer and fluid flow in additive manufacturing. J Laser Appl 25(5):052006CrossRefGoogle Scholar
  6. 6.
    Hopmann C, Yesildag N, Bremen S et al (2015) Surface quality of profile extrusion dies manufactured by selective laser melting. RTeJournal-Forum für Rapid Technologie 12:1–10Google Scholar
  7. 7.
    Simchi A, Petzoldt F, Pohl H (2003) On the development of direct metal laser sintering for rapid tooling. J Mater Process Technol 141(3):319–328CrossRefGoogle Scholar
  8. 8.
    Wang D, Yu C, Ma J et al (2017) Densification and crack suppression in selective laser melting of pure molybdenum. Mater Des 129:44–52CrossRefGoogle Scholar
  9. 9.
    Emmelmann C, Sander P, Kranz J et al (2011) Laser additive manufacturing and bionics: redefining lightweight design. Phys Procedia 12:364–368CrossRefGoogle Scholar
  10. 10.
    Barriobero-Vila P, Gussone J, Haubrich J et al (2017) Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4 V using intensified intrinsic heat treatments. Materials 10(3):268CrossRefGoogle Scholar
  11. 11.
    Froes FH, Dutta B (2014) The additive manufacturing (AM) of titanium alloys. Adv Mater Res 1019:19–25CrossRefGoogle Scholar
  12. 12.
    Yap CY, Chua CK, Dong ZL et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101CrossRefGoogle Scholar
  13. 13.
    Mugwagwa L, Dimitrov D, Matope S et al (2018) Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf 21:92–99CrossRefGoogle Scholar
  14. 14.
    Li C, Fu CH, Guo YB et al (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Tech 229:703–712CrossRefGoogle Scholar
  15. 15.
    Levy GN (2010) The role and future of the laser technology in the additive manufacturing environment. Phys Procedia 5 (Part A): 65–80Google Scholar
  16. 16.
    Hopkinson N, Dicknes P (2003) Analysis of rapid manufacturing-using layer manufacturing processes for production. Proc Inst Mech Eng Part C 217(1):31–39CrossRefGoogle Scholar
  17. 17.
    Xiong J, Yin Z, Zhang W (2016) Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J Mater Process Technol 233:100–106CrossRefGoogle Scholar
  18. 18.
    Moesen M, Craeghs T, Kruth JP et al (2011) Robust beam compensation for laser-based additive manufacturing. Comput Aided Des 43(8):876–888CrossRefGoogle Scholar
  19. 19.
    Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5(1):16–40CrossRefGoogle Scholar
  20. 20.
    Vlasea ML et al (2015) Development of powder bed fusion additive manufacturing test bed for enhanced real-time process control. In: Proceedings of the international solid freeform fabrication symposium, Austin, TX, USA, pp 13–15Google Scholar
  21. 21.
    Hofmeister W, Griffith M (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34CrossRefGoogle Scholar
  22. 22.
    Bidare P, Maier RRJ, Beck RJ et al (2017) An open-architecture metal powder bed fusion system for in-situ process measurements. Addit Manuf 16:177–185CrossRefGoogle Scholar
  23. 23.
    Bi G, Sun C, Gasser A (2013) Study on influential factors for process monitoring and control in laser aided additive manufacturing. J Mater Process Technol 213:463–468CrossRefGoogle Scholar
  24. 24.
    Mani M, Feng S, Lane B et al (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. http://dx.doi.org/10.6028/NIST.IR.8036. Accessed Feb 2015
  25. 25.
    Reutzel EW, Nassar AR (2015) A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyp J 21(2):159–167CrossRefGoogle Scholar
  26. 26.
    Rao GA, Srinivas M, Sarma DS (2006) Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng, A 435:84–99CrossRefGoogle Scholar
  27. 27.
    Mumtaz KA, Hopkinson N (2010) Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol 210(2):279–287CrossRefGoogle Scholar
  28. 28.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRefGoogle Scholar
  29. 29.
    Strondl A, Lyckfeldt O, Brodin H et al (2015) Characterization and control of powder properties for additive manufacturing. JOM 67(3):549–554CrossRefGoogle Scholar
  30. 30.
    Berumen S, Bechmann F, Craeghs T (2012) Quality control system for the coating process in laser-and powder bed-based additive manufacturing technologies. In: Direct digital manufacturing conference, BerlinGoogle Scholar
  31. 31.
    Melvin LS et al (1994) Video microscopy of selective laser sintering. In: Proceedings of the solid freeform fabrication symposium, University of Texas, AustinGoogle Scholar
  32. 32.
    Kleszczynski S, Zur JJ, Sehrt JT et al (2012) Error detection in laser beam melting systems by high resolution imaging. In: Proceedings of the twenty third annual international solid freeform fabrication symposiumGoogle Scholar
  33. 33.
    Zeng K (2012) A review of thermal analysis methods in laser sintering and selective laser melting. In: Proceedings of the solid freeform fabrication symposium, Austin, pp 796–814Google Scholar
  34. 34.
    Islam M, Purtonen T, Piili H et al (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842CrossRefGoogle Scholar
  35. 35.
    Ning Y, Wong YS, Fuh JY et al (2006) An approach to minimize build errors in direct metal laser sintering. IEEE Trans Autom Sci Eng 3(1):73–80CrossRefGoogle Scholar
  36. 36.
    Rombouts M, Kruth JP, Froyen L et al (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann Manuf Technol 55(1):187–192CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Hong GS, Ye D et al (2018) Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater Des 156:458–469CrossRefGoogle Scholar
  38. 38.
    Rieder H et al (2014) Online monitoring of additive manufacturing processes using ultrasound. In: Proceedings of the 11th European conference on non-destructive testing, October, Prague, pp 6–10Google Scholar
  39. 39.
    Prashanth KG, Scudino S, Maity T et al (2017) Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett 5(6):386–390CrossRefGoogle Scholar
  40. 40.
    Simonelli M, Tse Y, Tuck C (2014) The formation of α β microstructure in as-fabricated selective laser melting of Ti–6Al–4 V. J Mater Res 29(17):2028–2035CrossRefGoogle Scholar
  41. 41.
    Yadroitsev I, Krakhmalev P, Yadroitsava I (2014) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloy Compd 583:404–409CrossRefGoogle Scholar
  42. 42.
    Dadbakhsh S, Hao L, Sewell N (2012) Effect of selective laser melting layout on the quality of stainless-steel parts. Rapid Prototyp J 18(3):241–249CrossRefGoogle Scholar
  43. 43.
    Krauss H et al (2012) Thermography for monitoring the selective laser melting process. In: Proceedings of the solid freeform fabrication symposium, pp 999–1014Google Scholar
  44. 44.
    Bayle F et al (2008) Selective laser melting process monitoring with high speed infra-red camera and pyrometer. Int Soc Opt Photonics 6985:505–698Google Scholar
  45. 45.
    Doubenskaia MA et al (2015). Determination of true temperature in selective laser melting of metal powder using infrared camera. In: Materials science forum, vol 834. Trans Tech Publications, pp 93–102Google Scholar
  46. 46.
    Cheng B, Lydon J, Cooper K et al (2018) Infrared thermal imaging for melt pool analysis in SLM: a feasibility investigation. Virtual Phys Prototyp 13(1):8–13CrossRefGoogle Scholar
  47. 47.
    Clijsters S, Craeghs T, Buls S et al (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5–8):1089–1101CrossRefGoogle Scholar
  48. 48.
    Chivel Yu, Smurov I (2011) Temperature monitoring and overhang layer problem. Phys Procedia 12:691–696CrossRefGoogle Scholar
  49. 49.
    Chivel Y (2013) Optical in-process temperature monitoring of selective laser melting. Phys Procedia 41:904–910CrossRefGoogle Scholar
  50. 50.
    Doubenskaia M, Pavlov M, Grigoriev S et al (2012) Comprehensive optical monitoring of selective laser melting. J Laser Micro/Nanoeng 7(3):236–243CrossRefGoogle Scholar
  51. 51.
    Chivel Y, Smurov I (2010) On-line temperature monitoring in selective laser sintering/melting. Phys Procedia 5 (Part B): 515–521Google Scholar
  52. 52.
    Craeghs T, Clijsters S, Kruth JP et al (2012) Detection of process failures in layerwise laser melting with optical process monitoring. Phys Procedia 39:753–759CrossRefGoogle Scholar
  53. 53.
    Repossini G, Laguzza V, Grasso M et al (2017) On the use of spatter signature for in-situ monitoring of laser powder bed fusion. Addit Manuf 16:35–48CrossRefGoogle Scholar
  54. 54.
    Matthews MJ, Guss G, Khairallah SA et al (2016) Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 114:33–42CrossRefGoogle Scholar
  55. 55.
    Zhao C, Fezzaa K, Cunningham RW et al (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7(1):3602CrossRefGoogle Scholar
  56. 56.
    Imani F et al (2018) Layerwise in-process quality monitoring in laser powder bed fusion. ASME Paper No, MSEC, p 6477Google Scholar
  57. 57.
    Kruth JP et al (2007) On-line monitoring and process control in selective laser melting and laser cutting. In: Proceedings of the 5th lane conference, vol 1, Laser Assisted Net Shape Engineering, pp 23–37Google Scholar
  58. 58.
    Kruth JP et al (2007) Feedback control of selective laser melting. In: Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping, CRC Press, Boca Raton, pp 521–527Google Scholar
  59. 59.
    Berumen S, Bechmann F, Lindner S et al (2010) Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies. Phys Procedia 5:617–622CrossRefGoogle Scholar
  60. 60.
    Craeghs T, Bechmann F, Berumen S et al (2010) Feedback control of Layerwise Laser Melting using optical sensors. Physics Procedia 5:505–514CrossRefGoogle Scholar
  61. 61.
    Craeghs T et al (2011) Online quality control of selective laser melting. In: Proceedings of the solid freeform fabrication symposium, Austin, TX, pp 212–226Google Scholar
  62. 62.
    Kolossov S, Boillat E, Glardon R et al (2004) 3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process. Int J Mach Tools Manuf 44(2):117–123CrossRefGoogle Scholar
  63. 63.
    Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robot Comput-Integr Manuf 49:170–180CrossRefGoogle Scholar
  64. 64.
    Yu G, Gu D, Dai D et al (2016) On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3d printing of aluminum alloy. J Phys D Appl Phys 49(13):135501CrossRefGoogle Scholar
  65. 65.
    Zhang H, Xu W, Xu Y et al (2018) The thermal-mechanical behavior of wtamonb high-entropy alloy via selective laser melting (slm): experiment and simulation. Int J Adv Manuf Technol 96(5):1–14Google Scholar
  66. 66.
    Kleszczynski S et al (2012) Error detection in laser beam melting systems by high resolution imaging. In: Proceedings of the twenty third annual international solid freeform fabrication symposium, University of Texas at Austin, AustinGoogle Scholar
  67. 67.
    Dunbar AJ, Nassar AR (2018) Assessment of optical emission analysis for in-process monitoring of powder bed fusion additive manufacturing. Virtual Phys Prototyp 13(1):14–19CrossRefGoogle Scholar
  68. 68.
    Neef A, Seyda V, Herzog D et al (2014) Low coherence interferometry in selective laser melting. Phys Procedia 56:82–89CrossRefGoogle Scholar
  69. 69.
    Kanko JA, Sibley AP, Fraser JM (2016) In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J Mater Process Technol 231:488–500CrossRefGoogle Scholar
  70. 70.
    Postma S (2003) Weld pool control in Nd: YAG laser welding. University of Twente, EnschedeGoogle Scholar
  71. 71.
    Grasso M, Laguzza V, Semeraro Q et al (2017) In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. J Manuf Sci Eng 139(5):051001CrossRefGoogle Scholar
  72. 72.
    Srivatsan TS, Sudarshan TS (2015) Additive manufacturing: innovations, advances, and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  73. 73.
    Lu QY, Wong CH (2018) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys Prototyp 13(2):39–48CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yanhu Wang
    • 1
    • 2
  • Xizhang Chen
    • 1
    • 2
    Email author
  • S. Jayalakshmi
    • 1
  • R. Arvind Singh
    • 1
  • Konovalov Sergey
    • 1
    • 2
  • Manoj Gupta
    • 3
  1. 1.College of Mechanical and Electrical EngineeringWenzhou UniversityWenzhouChina
  2. 2.Institute of Rocket and Space Technology, Samara National Research UniversitySamaraRussia
  3. 3.Department of Mechanical EngineeringNational University of Singapore (NUS)SingaporeSingapore

Personalised recommendations