Advertisement

Alpha-Dicarbonyl Compounds

  • Jie Zheng
  • Juanying Ou
  • Shiyi OuEmail author
Chapter

Abstract

α-Dicarbonyl compounds (α-DCs), which act as precursors for advanced glycation end products in foods and in vivo, are toxic compounds formed from carbohydrates via caramelization and the Maillard reactions during thermal processing of foods. This chapter introduces the species, formation pathways, and analytical methods of α-dicarbonyl compounds, and their occurrence in foods. Their mitigation strategies in foods are also discussed.

References

  1. 1.
    Amoroso A et al (2013) Cytotoxicity of α-dicarbonyl compounds submitted to in vitro simulated digestion process. Food Chem 140(4):654–659PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Frischmann M et al (2005) Identification of DNA adducts of methylglyoxal. Chem Res Toxicol 18(10):1586–1592PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Welten AG et al (2003) Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and a proinflammatory response. Perit Dial Int 23(3):213–221PubMedPubMedCentralGoogle Scholar
  4. 4.
    Wieslander AP et al (1995) Are aldehydes in heat-sterilized peritoneal dialysis fluids toxic in vitro? Perit Dial Int 15(8):348–352PubMedPubMedCentralGoogle Scholar
  5. 5.
    Somoza V (2005) Five years of research on health risks and benefits of Maillard reaction products: an update. Mol Nutr Food Res 49(7):663–672PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Degen J et al (2012) 1,2-Dicarbonyl compounds in commonly consumed foods. J Agric Food Chem 60(28):7071–7079PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Marceau E, Yaylayan VA (2009) Profiling of α-dicarbonyl content of commercial honeys from different botanical origins: identification of 3, 4-dideoxyglucoson-3-ene (3, 4-DGE) and related compounds. J Agric Food Chem 57(22):10837–10844PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hellwig M et al (2010) 3-deoxygalactosone, a “new” 1,2-dicarbonyl compound in milk products. J Agric Food Chem 58(19):10752–10760PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bravo A et al (2008) Formation of α-dicarbonyl compounds in beer during storage of Pilsner. J Agric Food Chem 56(11):4134–4144PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang Y, Ho CT (2012) Flavour chemistry of methylglyoxal and glyoxal. Chem Soc Rev 41(11):4140–4149PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kroh LW (1994) Caramelisation in food and beverages. Food Chem 51(4):373–379CrossRefGoogle Scholar
  12. 12.
    Semchyshyn HM (2014) Reactive carbonyl species in vivo: generation and dual biological effects. Sci World J 2014:1–10CrossRefGoogle Scholar
  13. 13.
    Yaylayan VA et al (1994) Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit Rev Food Sci Nutr 34(4):321–369PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Thornalley PJ et al (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(1):109–116PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Nemet I et al (2006) Methylglyoxal in food and living organisms. Mol Nutr Food Res 50(12):1105–1117PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rizzi GP et al (2010) Quantification of chemically reducing species in the phosphate ion catalyzed degradation of reducing sugars. J Agric Food Chem 58(17):9739–9743PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nursten HE (2005) The Maillard reaction—chemistry, biochemistry and implications. Royal Society of Chemistry, CambridgeGoogle Scholar
  18. 18.
    Hollnagel A, Kroh LW (2002) 3-deoxypentosulose: an α-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution. J Agric Food Chem 50(6):1659–1664PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gobert J, Glomb MA (2009) Degradation of glucose: reinvestigation of reactive alpha-dicarbonyl compounds. J Agric Food Chem 57(18):8591–8597PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Weenen H, Tjan SB. 3-deoxyglucosone as flavour precursor. developments in food science. 1994Google Scholar
  21. 21.
    Fujioka K, Shibamoto T (2004) Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation. Lipids 39(5):481PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Frankel EN (1993) Formation of headspace volatiles by thermal decomposition of oxidized fish oil vs. oxidized vegetable oils. J Am Oil Chem Soc 70(8):767–772CrossRefGoogle Scholar
  23. 23.
    Esterbauer H (1982) Aldehydic products of lipid peroxidation. In: McBrien DCH, Slater TF (eds) Free radicals lipid peroxidation and cancer, Trends in cardiovascular medicine. Academic Press, London, pp 101–128Google Scholar
  24. 24.
    Neff WE et al (1992) Effect of triacylglycerol composition and structures on oxidative stability of oils from selected soybean germplasm. J Am Oil Chem Soc 69(2):111–118CrossRefGoogle Scholar
  25. 25.
    Niyatishirkhodaee F, Shibamoto T (1993) Gas chromatographic analysis of glyoxal and methylglyoxal formed from lipids and related compounds upon ultraviolet irradiation. J Agric Food Chem 41(2):227–230CrossRefGoogle Scholar
  26. 26.
    Schulz A et al (2007) Electrospray ionization mass spectrometric investigations of α-dicarbonyl compounds—probing intermediates formed in the course of the nonenzymatic browning reaction of l -ascorbic acid. Int J Mass Spectrom 262(3):169–173CrossRefGoogle Scholar
  27. 27.
    Glomb MA (2001) Detection of α-dicarbonyl compounds in Maillard reaction systems and in vivo. J Agric Food Chem 49(11):5543–5550PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dhar A et al (2009) Methylglyoxal, protein binding and biological samples: are we getting the true measure? J Chromatogr B Analyt Technol Biomed Life Sci 877(11–12):1093–1100PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lo CY et al (2008) Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem 107(3):1099–1105CrossRefGoogle Scholar
  30. 30.
    Kocadağlı T (2014) V Gk. Investigation of α-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J Agric Food Chem 62(31):7714–7720PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wang J, Chang T (2010) Methylglyoxal content in drinking coffee as a cytotoxic factor. J Food Sci 75(6):H167–HH71PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Daglia M et al (2007) Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J Agric Food Chem 55(22):8877–8882PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Daglia M et al (2013) Identification and quantification of α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells. J Food Compost Anal 31(1):67–74CrossRefGoogle Scholar
  34. 34.
    Weigel KU et al (2004) Studies on the occurrence and formation of 1,2-dicarbonyls in honey. Eur Food Res Technol 218(2):147–151CrossRefGoogle Scholar
  35. 35.
    Mavric E et al (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52(4):483–489PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Arribas-Lorenzo G (2010) Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. J Agric Food Chem 58(5):2966–2972PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zhang X et al (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62(7):1643–1648PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Navarro M, Morales FJ (2017) Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model. Food Chem 217:602–609PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wu L, Juurlink BH (2002) Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39(3):809–814PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tomo T et al (2005) Synergistic cytotoxicity of acidity and 3,4-dideoxyglucosone-3-ene under the existence of lactate in peritoneal dialysis fluid. Ther Apher Dial 9(2):182–187PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Henle T (2005) Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29(4):313–322PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mccance DR et al (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91(6):2470–2478PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Makita Z et al (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325(12):836–842PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Koschinsky T et al (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94(12):6474–6479PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Miyata T et al (1993) Beta 2-microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 92(3):1243–1252PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Vlassara H et al (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A 89(24):12043–12047PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Horiuchi S (1996) Advanced glycation end products (AGE)-modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc Med 6(5):163–168PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Vitek MP et al (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 91(11):4766–4770PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lyons TJ et al (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40(8):1010–1015PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Abraham EC et al (1989) Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging. Prog Clin Biol Res 304:123–139PubMedPubMedCentralGoogle Scholar
  51. 51.
    He C et al (1999) Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48(6):1308–1315PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Uribarri J et al (2003) Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis 42(3):532–538PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Uribarri J et al (2003) Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J Am Soc Nephrol 14(3):728–731PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Takahashi M et al (1996) Direct quantification of pentosidine in urine and serum by HPLC with column switching. Clin Chem 42(9):1439–1444PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sell DR et al (1996) Longevity and the genetic determination of collagen Glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci U S A 93(1):485–490PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Peppa M et al (2002) Advanced glycoxidation. A new risk factor for cardiovascular disease? Cardiovasc Toxicol 2(4):275–287PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Peppa M et al (2004) The role of advanced glycation end products in the development of atherosclerosis. Curr Diab Rep 4(1):31–36PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wu CH, Yen GC (2005) Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem 53(8):3167–3173PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Shao X et al (2008) Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem Res Toxicol 21(10):2042–2450PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lv L et al (2010) Stilbene glucoside from Polygonum multiflorum Thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. J Agric Food Chem 58(4):2239–2245PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Li X et al (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62(50):12152–12158PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lv L et al (2011) Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem Res Toxicol 24(4):579–586PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Peng X et al (2010) Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption. J Agric Food Chem 58(11):6692–6696PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lo CY et al (2011) Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci 76(3):H90–HH6PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ou J et al (2017) Effect of rosmarinic acid and carnosic acid on AGEs formation in vitro. Food Chem 221:1057–1061PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Navarro M et al (2015) Carbonyl trapping and antiglycative activities of olive oil mill wastewater. Food Funct 6(10):574–583PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lo CY et al (2006) Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol Nutr Food Res 50(12):1118–1128PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Zhang Z et al (2016) Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels. Food Chem 190:832–835PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kokkinidou S, Peterson DG (2013) Response surface methodology as optimization strategy for reduction of reactive carbonyl species in foods by means of phenolic chemistry. Food Funct 4(7):1093–1104PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hou TH et al (2013) Antioxidation and antiglycation of 95% ethanolic extracts prepared from; the leaves of black nightshade (Solanum nigrum). Food Sci Biotechnol 22(3):839–844CrossRefGoogle Scholar
  71. 71.
    Martins SI et al (2003) Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism. Carbohydr Res 338(16):1651–1663PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Martins SIFS, Boekel MAJSV (2003) Kinetic modeling of Amadori N-(2-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part II - kinetic analysis. Carbohydr Res 338(16):1665–1678PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nedvidek W et al (1992) Detection of 5-hydroxymethyl-2-methyl-3(2H)-furanone and of α-dicarbonyl compounds in reaction mixtures of hexoses and pentoses with different amines. Z Lebensm Unters Forsch 194(3):222–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Food Science and EngineeringJinan UniversityGuangzhouChina

Personalised recommendations