Advertisement

Application of Artificial Intelligence in Healthcare

  • Janya Chanchaichujit
  • Albert Tan
  • Fanwen Meng
  • Sarayoot Eaimkhong
Chapter

Abstract

This chapter presents the role and significance of Artificial Intelligence, commonly known as AI, in the control and management of Tuberculosis (TB). The complexity of the disease and problems in TB diagnosis are introduced. Following this, initiatives and opportunities for using AI in TB diagnosis in Thailand are shown as a case study. The chapter concludes by discussing the current limitations of AI improvement, alternative models and key success factors in the implementation of AI in TB.

Keywords

Artificial Intelligence (AI) Tuberculosis Neuro Learning Deep Learning Innovation management Chest X-ray 

Notes

Acknowledgement

The authors would like to express their sincere gratitude to Dr Krit Pongpirul for his generous support and time in sharing his knowledge and information about the use of AI in his work in this chapter and Mr. Sinarta Wirawan, Dr. Albert Tan’s student at Curtin University, Singapore in conducting a literature review for this chapter.

References

  1. AbuHassan, K. J., Bakhori, N. M., Kusnin, N., Azmi, U. Z., Tania, M. H., Evans, B. A., …, Hossain, M. (2017). Automatic diagnosis of Tuberculosis disease based on Plasmonic ELISA and color-based image classification. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE.Google Scholar
  2. Barga, R., Fontama, V., Tok, W. H., & Cabrera-Cordon, L. (2015). Predictive analytics with Microsoft Azure machine learning. Springer.Google Scholar
  3. Bastawrous, A., & Armstrong, M. J. (2013). Mobile health use in low-and high-income countries: An overview of the peer-reviewed literature. Journal of the Royal Society of Medicine, 106(4), 130–142.CrossRefGoogle Scholar
  4. Baussano, I., Nunn, P., Williams, B., Pivetta, E., Bugiani, M., & Scano, F. (2011). Tuberculosis among health care workers. Emerging Infectious Diseases, 17(3), 488.CrossRefGoogle Scholar
  5. CDC. (2016). Chapter 2: Transmission and pathogenesis of Tuberculosis. Retrieved from www.cdc.gov/tb/education/corecurr/pdf/chapter2.pdf.
  6. CDC. (2018). TB testing & diagnosis. Retrieved from www.cdc.gov/tb/topic/testing.
  7. Center, U. o. M. M. (2016). Sputum Gram stain e overview. Retrieved from www.umm.edu/ency/article/.
  8. Chui, K., Alhalabi, W., Pang, S., Pablos, P., Liu, R., & Zhao, M. (2017). Disease diagnosis in smart healthcare: Innovation, technologies and applications. Sustainability, 9(12), 2309.CrossRefGoogle Scholar
  9. Cohen, T., & Murray, M. (2005). Incident Tuberculosis among recent US immigrants and exogenous reinfection. Emerging Infectious Diseases, 11(5), 725.CrossRefGoogle Scholar
  10. Dande, P., & Samant, P. (2018). Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for Tuberculosis: A review. Tuberculosis, 108, 1–9.  https://doi.org/10.1016/j.tube.2017.09.006CrossRefGoogle Scholar
  11. Doshi, R., Falzon, D., Thomas, B. V., Temesgen, Z., Sadasivan, L., Migliori, G. B., & Raviglione, M. (2017). Tuberculosis control, and the where and why of artificial intelligence. ERJ Open Research, 3(2), 00056–02017.CrossRefGoogle Scholar
  12. Dowsland, K. A., & Thompson, J. M. (2000). Solving a nurse scheduling problem with knapsacks, networks and tabu search. Journal of the Operational Research Society, 51(7), 825.  https://doi.org/10.1057/palgrave.jors.2600970
  13. Er, O., Temurtas, F., & Tanrıkulu, A. Ç. (2010). Tuberculosis disease diagnosis using artificial neural networks. Journal of Medical Systems, 34(3), 299–302.CrossRefGoogle Scholar
  14. Falzon, D., Timimi, H., Kurosinski, P., Migliori, G. B., Van Gemert, W., Denkinger, C., … do Valle Bastos, L. G. (2016). Digital health for the end TB Strategy: Developing priority products and making them work. European Respiratory Journal, 48(1), 29–45.CrossRefGoogle Scholar
  15. Fanning, A. (1999). Tuberculosis: 6. Extrapulmonary disease. CMAJ: Canadian Medical Association Journal = journal de l’Association medicale canadienne, 160(11), 1597–1603.Google Scholar
  16. Farrugia, S., Yee, H., & Nickolls, P. (1993). Implantable cardioverter defibrillator electrogram recognition with a multilayer perceptron. Pacing and Clinical Electrophysiology, 16(1), 228–234.CrossRefGoogle Scholar
  17. George, F. L. (1992). Artificial intelligence: Structures and strategies for complex problem solving. Benjamin/Cummings.Google Scholar
  18. Gesing, B., Peterson, S., & Michelsen, D. (2018). Artificial intelligence in logistics. Retrieved from https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-ai-in-logistics-white-paper.pdf.
  19. Hans, R., & Marwaha, N. (2014). Nucleic acid testing-benefits and constraints. Asian Journal of Transfusion Science, 8(1), 2.Google Scholar
  20. Health, N. J. Tuberculosis program. Retrieved October 1, 2018, from https://www.nationaljewish.org/treatment-programs/directory/tb.
  21. Jereb, J., Etkind, S. C., Joglar, O. T., Moore, M., & Taylor, Z. (2003). Tuberculosis contact investigations: Outcomes in selected areas of the United States, 1999. International Journal of Tuberculosis and Lung Disease, 7(12 Suppl. 3), S384–S390.Google Scholar
  22. Joshi, R., Reingold, A. L., Menzies, D., & Pai, M. (2006). Tuberculosis among health-care workers in low-and middle-income countries: A systematic review. PLoS Medicine, 3(12), e494.CrossRefGoogle Scholar
  23. Kanabus, A. (2018). Information about Tuberculosis. Retrieved from https://www.tbfacts.org/countries-tb/.
  24. Lakhani, P., & Sundaram, B. (2017). Deep learning at chest radiography: Automated classification of pulmonary Tuberculosis by using convolutional neural networks. Radiology, 284(2), 574–582.CrossRefGoogle Scholar
  25. Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Deep Learning for Consumer Devices and Services: Pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consumer Electronics Magazine, 6(2), 48–56.CrossRefGoogle Scholar
  26. Lin, P. L., & Flynn, J. L. (2010). Understanding latent Tuberculosis: A moving target. Journal of Immunology, 185(1), 15–22.  https://doi.org/10.4049/jimmunol.0903856CrossRefGoogle Scholar
  27. Lindsay McKenna, A. Z., & Lessem, E. (2014). An activist’s guide to Tuberculosis drugs. New York: Treatment Action Group. Retrieved from http://www.treatmentactiongroup.org/sites/default/files/2016%20Activists%20Guide%20to%20TB%20Drugs.1.5.pdf
  28. Little, J. V. (2004). Non-neoplastic disorders of the lower respiratory tract: Atlas of nontumor pathology. Chest, 125(3), 1176–1177.  https://doi.org/10.1378/chest.125.3.1176-aCrossRefGoogle Scholar
  29. Marr, B. (2016). How machine learning, big data and AI are changing healthcare forever. Forbes Magazine. Retrieved from https://www.forbes.com/sites/bernardmarr/2016/09/23/how-machine-learning-big-data-and-ai-are-changing-healthcare-forever/#429051561a1c.
  30. Nienhaus, A., Schablon, A., Costa, J. T., & Diel, R. (2011). Systematic review of cost and cost-effectiveness of different TB-screening strategies. BMC Health Services Research, 11, 247–247. https://doi.org/10.1186/1472-6963-11–247
  31. Pande, T., Cohen, C., Pai, M., & Ahmad Khan, F. (2016). Computer-aided detection of pulmonary Tuberculosis on digital chest radiographs: A systematic review. The International Journal of Tuberculosis and Lung Disease, 20(9), 1226–1230.CrossRefGoogle Scholar
  32. Pongpirul, K., Sathitratanacheewin, S., Sunanta, P., & Kampa, K. (2018, 3–7 October 2018). Deep learning for automated classification of abnormal chest radiograph associated with Tuberculosis (DAC4TB) in the U.S. Hospital-scale CXR database. Paper presented at the IDWeek 2018, San Francisco, USA.Google Scholar
  33. Qure.AI. Retrieved from http://qure.ai/qxr/.
  34. Research, M. F. f. M. E. a. Mycobacterium Tuberculosis complex, molecular detection, PCR, Paraffin. Retrieved from https://www.mayocliniclabs.com/test-catalog/Clinical%C3%BEand%C3%BEInterpretive/62203.
  35. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.CrossRefGoogle Scholar
  36. Satheeshkumar, K., & Raj, A. N. J. (2006). Developments in computer aided diagnosis used for Tuberculosis detection using chest radiography: A survey. Journal of Engineering and Applied Sciences, 11(9), 5530–5539. Retrieved from https://pdfs.semanticscholar.org/aa1d/0fec10dda57fe549768ba51513a1b802d39a.pdf
  37. Sathitratanacheewin, S., & Pongpirul, K. (2018). Deep Learning for Automated Classification of Tuberculosis-Related Chest X-Ray: Dataset Specificity Limits Diagnostic Performance Generalizability.Google Scholar
  38. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRefGoogle Scholar
  39. Scott, L., Gous, N., Cunningham, B., Kana, B., Perovic, O., Erasmus, L., … Stevens, W. (2011). Dried culture spots for Xpert MTB/RIF external quality assessment: Results of phase 1 pilot study from South Africa. Journal of Clinical Microbiology, 49(12), 4356–4360.CrossRefGoogle Scholar
  40. Shamshirband, S., Hessam, S., Javidnia, H., Amiribesheli, M., Vahdat, S., Petković, D., … Kiah, M. L. M. (2014). Tuberculosis disease diagnosis using artificial immune recognition system. International Journal of Medical Sciences, 11(5), 508.CrossRefGoogle Scholar
  41. Singh, P., Kant, S., Gaur, P., Tripathi, A., & Pandey, S. (2018). Extra pulmonary Tuberculosis: An overview and review of literature. International Journal of Life-Sciences Scientific Research, 4(1), 1539–1541.Google Scholar
  42. Sonrueng, V. (2018). กรมควบคุมโรค รณรงค์ “ผู้ขับขี่ปอดสะอาด ปราศจากวัณโรค”. Retrieved from http://www.btripnews.net/?p=22348.
  43. Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146.CrossRefGoogle Scholar
  44. Tania, M. H., Lwin, K., AbuHassan, K., Bakhori, N. M., Azmi, U. Z. M., Yusof, N. A., & Hossain, M. (2017). An Automated Colourimetric Test by Computational Chromaticity Analysis: A Case Study of Tuberculosis Test. Paper presented at the International Conference on Practical Applications of Computational Biology & Bioinformatics.Google Scholar
  45. Tasillo, A., Salomon, J. A., Trikalinos, T. A., Horsburgh, C. R., Jr., Marks, S. M., & Linas, B. P. (2017). Cost-effectiveness of testing and treatment for latent Tuberculosis infection in residents born outside the United States with and without medical comorbidities in a simulation model. JAMA Internal Medicine, 177(12), 1755–1764.  https://doi.org/10.1001/jamainternmed.2017.3941CrossRefGoogle Scholar
  46. Thai PBS. (2017). Over 3,000 prison inmates found to have TB. Retrieved from http://englishnews.thaipbs.or.th/3000-prison-inmates-found-tb/.
  47. The Nation. (2018a). 388 suspected TB cases found among inmates in Phitsanulok prisons. Retrieved from http://www.nationmultimedia.com/detail/breakingnews/30355321.
  48. The Nation. (2018b). Inmates in Northeast screened for TB. Retrieved from http://www.nationmultimedia.com/detail/national/30341409.
  49. Tsara, V., Serasli, E., & Christaki, P. (2009). Problems in diagnosis and treatment of Tuberculosis infection. Hippokratia, 13(1), 20–22.Google Scholar
  50. UN. Sustainable development goals. Retrieved from https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals.
  51. Unahalekhaka, A. (2010). Situation analysis of nosocomial TB transmission prevention among hospitals in Thailand: Presentation Number 8-086. AJIC (American Journal of Infection Control), 38(5), E75–E76.Google Scholar
  52. Uplekar, M., Weil, D., Lonnroth, K., Jaramillo, E., Lienhardt, C., Dias, H. M., … Raviglione, M. (2015). WHO’s new end TB strategy. The Lancet, 385(9979), 1799–1801.  https://doi.org/10.1016/S0140-6736(15)60570-0CrossRefGoogle Scholar
  53. Vikas K. Saket, R. K. a. P. S. (2017). Tuberculosis in animals and humans: Evolution of diagnostics and therapy. Asian Journal of Animal and Veterinary Advances, 12(4), 177–188.CrossRefGoogle Scholar
  54. von Delft, A., Dramowski, A., Khosa, C., Kotze, K., Lederer, P., Mosidi, T., … von Delft, D. (2015). Why healthcare workers are sick of TB. International Journal of Infectious Diseases, 32, 147–151.CrossRefGoogle Scholar
  55. WebMD. What is a sputum culture? Retrieved October 1, 2018, from www.webmd.com/lung/sputum-culture.
  56. WHO. (2006a). Diagnostics for Tuberculosis: Global demand and market potential, 26. Retrieved from http://www.who.int/iris/handle/10665/43543.
  57. WHO. (2006b). Tuberculosis Fact sheet N°104—Global and regional incidence. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.
  58. WHO. (2008). New laboratory diagnostic tools for Tuberculosis control. Retrieved from https://www.who.int/tdr/publications/documents/diagnostic-tool-tb.pdf.
  59. WHO. (2010). Treatment of Tuberculosis: Guidelines. Retrieved from https://www.who.int/tb/publications/2010/9789241547833/en/.
  60. WHO. (2011a). Fluorescent light-emitting diode (LED) microscopy for diagnosis of Tuberculosis: Policy statement. Retrieved from https://www.who.int/tb/publications/2011/led_microscopy_diagnosis_9789241501613/en/.
  61. WHO. (2011b). Guidelines for intensified case-finding and isoniazid preventive therapy for people living with HIV in resource constrained settings. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/44472/9789241500708_eng.pdf?sequence=1.
  62. WHO. (2014). Global Tuberculosis Report 2014. Retrieved from http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf.
  63. WHO. (2015a). Digital health for the end TB strategy: An agenda for action. Retrieved from https://www.who.int/tb/publications/digitalhealth-TB-agenda/en/.
  64. WHO. (2015b). Systematic screening for active Tuberculosis: An operational guide (WHO/HTM/TB/2015.16). Retrieved from https://apps.who.int/iris/bitstream/handle/10665/181164/9789241549172_eng.pdf?sequence=1.
  65. WHO. (2016). Chest radiography in Tuberculosis detection: Summary of current WHO recommendations and guidance on programmatic approaches. Retrieved from https://www.who.int/tb/publications/chest-radiography/en/.
  66. WHO. (2017). Global Tuberculosis Report 2017. Retrieved from http://www.who.int/tb/publications/global_report/en/
  67. WHO. (2018a). Latent Tuberculosis infection: Updated and consolidated guidelines for programmatic management. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/260233/9789241550239-eng.pdf?sequence=1.
  68. WHO. (2018b). Tuberculosis country profiles. From World Health Organisation https://www.who.int/tb/country/data/profiles/en/.
  69. Xiong, Y., Ba, X., Hou, A., Zhang, K., Chen, L., & Li, T. (2018). Automatic detection of mycobacterium Tuberculosis using artificial intelligence. Journal of Thoracic Disease, 10(3), 1936–1940.CrossRefGoogle Scholar
  70. Yahiaoui, A., Er, O., & Yumusak, N. (2017). A new method of automatic recognition for Tuberculosis disease diagnosis using support vector machines. Biomedical Research, 28(9).Google Scholar
  71. Zink, A. R., Grabner, W., & Nerlich, A. G. (2005). Molecular identification of human Tuberculosis in recent and historic bone tissue samples: The role of molecular techniques for the study of historic Tuberculosis. American Journal of Physical Anthropology, 126(1), 32–47.  https://doi.org/10.1002/ajpa.10409CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Janya Chanchaichujit
    • 1
  • Albert Tan
    • 2
  • Fanwen Meng
    • 3
  • Sarayoot Eaimkhong
    • 4
  1. 1.School of ManagementWalailak UniversityThasalaThailand
  2. 2.Malaysia Institute for Supply Chain InnovationShah AlamMalaysia
  3. 3.Department of Health Services & Outcomes ResearchNational Healthcare GroupSingaporeSingapore
  4. 4.National Science and Technology Development AgencyPathum ThaniThailand

Personalised recommendations