Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning

  • C. M. Krammel
  • P. M. KoenraadEmail author
  • M. Roy
  • P. A. Maksym
  • Shumin Wang
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 285)


The structural properties of highly mismatched III-V semiconductors with small amounts of Bi are still not well understood at the atomic level. In this chapter, the potential of cross-sectional scanning tunneling microscopy (X-STM) to address these questions is reviewed. Special attention is paid to the X-STM contrast of isovalent impurities in the III-V system, which is discussed on the basis of theoretical STM images of the (110) surface using density functional theory (DFT) calculations. By comparing high-resolution X-STM images with complementary DFT calculations, Bi atoms down to the third monolayer below the InP (110) surface are identified. With this information, the Short-range ordering of Bi is studied, which reveals a strong tendency toward Bi pairing and clustering. In addition, the occurrence of Bi surface segregation at the interfaces of an InP/InP\(_{1-x}\)Bi\(_{x}\)/InP quantum well with a Bi concentration of \(2.4~\%\) is discussed.


  1. 1.
    Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III-V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)Google Scholar
  2. 2.
    Z. Batool et al., The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Chen et al, Effects of Bi on band gap bowing in \({\rm InP}_{1-x}{\rm Bi}_x\) alloys. Opt. Mater. Express 8, 1184 (2018)CrossRefGoogle Scholar
  4. 4.
    C.A. Broderick, M. Usman, E.P. O’Reilly. Theory of the electronic structure of dilute bismide alloys: tight-binding and k\(\cdot \)p models. in Bismuth-Containing Compounds. Ed. by H. Li, Z.M. Wang (Springer, New York, 2013), p. 55. ISBN: 978-1-4614-8121-8Google Scholar
  5. 5.
    K. Wang et al., InPBi single crystals grown by molecular beam epitaxy. Sci. Rep. 4, 5449 (2014)Google Scholar
  6. 6.
    K. Alberi et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B. 75, 045203 (2007)Google Scholar
  7. 7.
    C.M. Krammel et al., Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy. Phys. Rev. Mater. 1, 034606 (2017)Google Scholar
  8. 8.
    S. Francoeur et al., Band gap of \({\rm GaAs}_{1-x}{\rm Bi}_x, 0 < x <\) 3:6% Lett. 82, 3874 (2003)Google Scholar
  9. 9.
    S. Tixier et al., Molecular beam epitaxy growth of \({\rm GaAs}_{1-x}{\rm Bi}_x\). Appl. Phys. Lett. 82, 2245 (2003)CrossRefGoogle Scholar
  10. 10.
    D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Ciatto et al., Spatial correlation between Bi atoms in dilute \({\rm GaAs}_{1-x}{\rm Bi}_x\): from random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008)Google Scholar
  12. 12.
    C.M. Krammel., Atomic scale investigation of isovalent impurities and nanostructures in III-V semiconductors. PhD thesis. (2018)Google Scholar
  13. 13.
    F.J. Tilley et al., Scanning tunneling microscopy contrast of isovalent impurities on the GaAs (110) surface explained with a geometrical model. Phys. Rev. B. 93, 035313 (2016)Google Scholar
  14. 14.
    R.M. Feenstra, A.P. Fein, Scanning tunneling microscopy of cleaved semiconductor surfaces. IBM J. Res. Develop. 30, 466 (1986)CrossRefGoogle Scholar
  15. 15.
    J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26.6, 064001 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80.1, 1 (2005)CrossRefGoogle Scholar
  17. 17.
    E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRefGoogle Scholar
  18. 18.
    R.S. Goldman, nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion. J. Phys. D: Appl. Phys. 37, R163 (2004)CrossRefGoogle Scholar
  19. 19.
    J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26, 064001 (2011)CrossRefGoogle Scholar
  20. 20.
    R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, 1994), p. 109. ISBN: 9780521428477Google Scholar
  21. 21.
    C.J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford Series in Optical and Imaging Sciences (Oxford University Press, 1993). ISBN: 9780198023562Google Scholar
  22. 22.
    J.A. Stroscio, W.J. Kaiser, Scanning Tunneling Microscopy (Elsevier Science, Methods of Experimental Physics, 1993). ISBN 9780080860152Google Scholar
  23. 23.
    H. Ye et al., Relaxation models of the (110) zinc-blende III-V semiconductor surfaces: density functional study. Phys. Rev. B 78, 193308 (2008)Google Scholar
  24. 24.
    J.R. Chelikowsky, M.L. Cohen, Self-consistent pseudopotential calculation for the relaxed (110) surface of GaAs. Phys. Rev. B 20, 4150 (1979)Google Scholar
  25. 25.
    Ph. Ebert et al., Contribution of surface resonances to scanning tunneling microscopy images: (110) surfaces of III-V semiconductors. Phys. Rev. Lett. 77, 2997 (1996)CrossRefGoogle Scholar
  26. 26.
    B. Engels et al., Comparison between ab initio theory and scanning tunneling microscopy for (110) surfaces of III-V semiconductors. Phys. Rev. B 58, 7799 (1998)Google Scholar
  27. 27.
    R.M. Feenstra et al., Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192 (1987)CrossRefGoogle Scholar
  28. 28.
    H.A. McKay et al., Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. J. Vac. Sci. & Technol. B 19, 1644 (2001)Google Scholar
  29. 29.
    A.Y. Lew et al. Characterization of arsenide/phosphide heterostructure interfaces grown by gassource molecular beam epitaxy. Appl. Phys. Lett. 67, 932 (1995)CrossRefGoogle Scholar
  30. 30.
    R. Timm et al., Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures. J. Appl. Phys. 105, 093718 (2009)CrossRefGoogle Scholar
  31. 31.
    H.W.M. Salemink, M.B. Johnson, O. Albrektsen, Crosssectional scanning tunneling microscopy on heterostructures: atomic resolution, composition fluctuations and doping. J. Vac. Sci. & Technol. B 12, 362 (1994)Google Scholar
  32. 32.
    A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80, 1 (2005)CrossRefGoogle Scholar
  33. 33.
    E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRefGoogle Scholar
  34. 34.
    X. Wu et al., Anomalous photoluminescence in \({\rm InP}_{1-x}{\rm Bi}_x\). Sci. Rep. 27867 (2016)Google Scholar
  35. 35.
    L. Gelczuk et al., Bi-induced acceptor level responsible for partial compensation of native free electron density in InP 1 x Bi x dilute bismide alloys. J. Phys. D: Appl. Phys. 49, 115107 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth. 251, 449 (2003)CrossRefGoogle Scholar
  37. 37.
    M.R. Pillai et al., Growth of \({\rm In}_x{\rm Ga}_{1x}{\rm As/GaAs}\) heterostructures using Bi as a surfactant. J. Vac. Sci. & Technol. B. 18, 1232 (2000)Google Scholar
  38. 38.
    K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)Google Scholar
  39. 39.
    M.A. Berding et al., Structural properties of bismuth-bearing semiconductor alloys. J. Appl. Phys. 63, 107 (1988)CrossRefGoogle Scholar
  40. 40.
    L. Dominguez et al., Formation of tetragonal InBi clusters in InAsBi/InAs (100) heterostructures grown by molecular beam epitaxy. Appl. Phys. Exp. 6, 112601 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • C. M. Krammel
    • 1
  • P. M. Koenraad
    • 1
    Email author
  • M. Roy
    • 2
  • P. A. Maksym
    • 2
  • Shumin Wang
    • 3
    • 4
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  3. 3.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  4. 4.Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSweden

Personalised recommendations