Advertisement

Taurine 11 pp 1015-1031 | Cite as

Combined Biological Effects of N-Bromotaurine Analogs and Ibuprofen. Part I: Influence on Inflammatory Properties of Macrophages

  • Maria Walczewska
  • Marta Ciszek-Lenda
  • Angelika Peruń
  • Aneta Kiecka
  • Katarzyna Nazimek
  • Anthony Kyriakopoulos
  • Markus Nagl
  • Waldemar Gottardi
  • Janusz MarcinkiewiczEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1155)

Abstract

Taurine haloamines (N-chlorotaurine, N-bromotaurine) due to their strong antiseptic and anti-inflammatory properties are good candidates for topical application in treatment of skin inflammatory/infectious disorders. Recently, we have demonstrated that more stable N-bromotaurine analogs (N-dibromo-dimethyl taurine, N-monobromo-dimethyl taurine) and bromamine T show strong microbicidal and anti-inflammatory properties at concentrations well tolerated by human cells and tissue. Non-steroidal anti-inflammatory drugs (NSAIDs) with cyclooxygenase (COX) inhibitory activity are commonly used in various inflammatory diseases. However, systemic administration of NSAIDs may result in adverse side effects. For example, the use of ibuprofen in children with varicella is associated with enhanced serum levels of TNF-α and with increased risk of necrotizing soft tissue infections and secondary skin infections caused by invasive streptococci. The aim of this study was to examine combined immunomodulatory effects of bromamines and ibuprofen on J774.A1 macrophages. We have shown that the primary activity of ibuprofen, the inhibition of PGE2 production by activated macrophages was intensified in the presence of bromamines. Most importantly, the stimulatory effect of ibuprofen on production of inflammatory cytokines (TNF-α, IL-6) was inhibited by all tested bromamines. These observations indicate that bromamines may neutralize massive production of TNF-α at sites of inflammation, a side effect of ibuprofen. Therefore, we suggest that systemic administration of ibuprofen (NSAIDs) in treatment of inflammatory/infectious skin diseases should be supported by topical application of bromamines as an adjunctive therapy.

Keywords

Taurine N-bromotaurine analogs Bromamine T Ibuprofen Inflammation soft-tissue infections S. pyogenes 

Abbreviations

Tau

taurine

HOBr

hypobromous acid

Tau-NHBr

N-bromotaurine, taurine bromamine

DM-NBrT

(Br-622) N-monobromo-dimethyltaurine

DM-NBr2T

(Br-422) N-dibromo-dimethyltaurine

BAT

bromamine T, N-bromo-N-sodio-p-toluenesulfonamide

LPS

lipopolysaccharide

NSAIDs

non-steroidal anti-inflammatory drugs

COX-2

cyclooxygenase-2

PGE2

prostaglandin E2

TNF-α

tumor necrosis factor

J774.A1

murine macrophage cell line

S. pyogenes

Streptococcus pyogenes

IC50

half maximal inhibitory concentration

Notes

Acknowledgements

This study was supported by grants from the Jagiellonian University Medical College (grant no. K/ZDS/005454). We would like to thank Małgorzata Śróttek for a technical support.

References

  1. Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christman BW, Dupont WD, Higgins SB, Swindell BB (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The ibuprofen in sepsis study group. N Engl J Med 336:912–918CrossRefGoogle Scholar
  2. Bessler H, Cohen-Terica D, Djaldetti M, Sirota P (2017) The effect of ibuprofen on cytokine production by mononuclear cells from schizophrenic patients. Folia Biol (Praha) 63:13–19Google Scholar
  3. Bryant AE, Bayer CR, Aldape MJ, Stevens DL (2015) The roles of injury and nonsteroidal anti-inflammatory drugs in the development and outcomes of severe group A streptococcal soft tissue infections. Curr Opin Infect Dis 28:231–239CrossRefGoogle Scholar
  4. Çağıltay E, Kaplan M, Nalbant S, Akpak YK, Sahan B, Akmaz İ (2015) Does non-steroidal anti-inflammatory drugs increase tumor necrosis factor-alpha levels? Int J Res Med Sci 3:2280–2283CrossRefGoogle Scholar
  5. Dahlén E, Dawe K, Ohlsson L, Hedlund G (1998) Dendritic cells and macrophages are the first and major producers of TNF-α in pancreatic islets in the nonobese diabetic mouse. J Immunol 160:3585–3593PubMedGoogle Scholar
  6. Diao H, Kohanawa M, Yimin NH, Sato Y, Minagawa T, Nakane A, Yimin (2002) Lipopolysaccharide triggers invasive streptococcal disease in mice through a tumour necrosis factor-alpha-dependent mechanism. Immunology 105:344–349CrossRefGoogle Scholar
  7. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitro-gen intermediates from mouse peritoneal macrophages: compari-son of activating cytokines and evidence for independent produc-tion. J Immunol 141:2407–2412PubMedGoogle Scholar
  8. Goldmann O, Hertzén E, Hecht A, Schmidt H, Lehne S, Norrby-Teglund A, Medina E (2010) Inducible cyclooxygenase released prostaglandin E2 modulates the severity of infection caused by Streptococcus pyogenes. J Immunol 185(4):2372–2381CrossRefGoogle Scholar
  9. Gottardi W, Nagl M (2010) N-chlorotaurine, a natural antiseptic with outstanding tolerability. J Antimicrob Chemother 65:399–409CrossRefGoogle Scholar
  10. Gottardi W, Klotz S, Nagl M (2014) Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load. J Appl Microbiol 116:427–1437CrossRefGoogle Scholar
  11. Hay AD, Costelloe C, Redmond N, Montgomery A, Fletcher M, Hollinghurst S, Peters TJ (2008) Paracetamol plus ibuprofen for the treatment of fever in children (PITCH): randomised controlled trial. BMJ 337:1302CrossRefGoogle Scholar
  12. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625CrossRefGoogle Scholar
  13. Kudo I, Murakami M (2005) Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol 38:633–638PubMedGoogle Scholar
  14. Kyriakopoulos AM, Logotheti S, Marcinkiewicz J, Nagl M (2016) N-chlorotaurine and N-bromotaurine combination regimen for the cure of valacyclovir-unresponsive Herpes Zoster comorbidity in a multiple sclerosis patient. Int J Med Pharm Case Reports 7:1–6CrossRefGoogle Scholar
  15. Le Turnier P, Boutoille D, Joyau C, Veyrac G, Asseray N (2017) Bacterial infections and NSAIDs exposure? Seek septic complications. Eur J Intern Med 41:33–34CrossRefGoogle Scholar
  16. Lesko SM, O’Brien KL, Schwartz B, Vezina R, Mitchell AA (2001) Invasive Group A Streptococcal infection and nonsteroidal antiinflammatory drug use among children with primary varicella. Pediatrics 107:5CrossRefGoogle Scholar
  17. Marcinkiewicz J (2009) Taurine bromamine: a new therapeutic option in inflammatory skin diseases. Pol Arch Med Wewn 119:673–676PubMedGoogle Scholar
  18. Marcinkiewicz J (2010) Taurine bromamine (TauBr)-its role in immunity and new perspectives for clinical use. J Biomed Sci 17:S3CrossRefGoogle Scholar
  19. Marcinkiewicz J, Mak M, Bobek M, Biedroń R, Białecka A, Koprowski M, Kontny E, Maśliński W (2005) Is there a role of taurine bromamine in in-flammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res 54:42–49CrossRefGoogle Scholar
  20. Marcinkiewicz J, Biedroń R, Białecka A, Kasprowicz A, Mak M, Targosz M (2006) Susceptibility of Propionibacterium acnes and Staphylococcus epidermidis to killing by MPO-halide system products. Implication for taurine bromamine as a new candidate for topical therapy in treating acne vulgaris. Arch Immunol Ther Exp 54:61–68CrossRefGoogle Scholar
  21. Marcinkiewicz J, Wojas-Pelc A, Walczewska M, Lipko-Godlewska S, Jachowicz R, Maciejewska A, Białecka A, Kasprowicz A (2008) Topical taurine bromamine, a new candidate in the treatment of moderate inflammatory acne vulgaris: a pilot study. Eur J Dermatol 18:433–439PubMedGoogle Scholar
  22. Martín Sanz P, Hortelano S, Bosca L, Casado M (2006) Cyclooxygenase 2: understanding the pathophysiological role through genetically altered mouse models. Front Biosci 11(1):2876–2888CrossRefGoogle Scholar
  23. Mikaeloff Y, Kezouh A, Suissa S (2008) Nonsteroidal anti-inflammatory drug use and the risk of severe skin and soft tissue complications in patients with varicella or zoster disease. Br J Clin Pharmacol 65:203–209CrossRefGoogle Scholar
  24. Nagl M, Nguyen VA, Gottardi W, Ulmer H, Höpfl R (2003) Tolerability and efficacy of N chlorotaurine in comparison with chloramine T for treatment of chronic leg ulcers with a purulent coating: a randomized phase II study. Br J Dermatol 149:590–597CrossRefGoogle Scholar
  25. Nair CG, Lalithakumari R, Senan PI (1978) Bromamine-T as a new oxidimetric titrant. Talanta 25:525–527CrossRefGoogle Scholar
  26. Norrby-Teglund A, Pauksens K, Norgren M, Holm SE (1995) Correlation between serum TNF alpha and IL-6 levels and severity of group A streptococcal infections. Scand J Infect Dis 27:125–130CrossRefGoogle Scholar
  27. Pettipher ER, Wimberly DJ (1994) Cyclooxygenase inhibitors enhance tumour necrosis factor production and mortality in murineendotoxic shock. Cytokine 6:500–503CrossRefGoogle Scholar
  28. Rainsford KD (2009) Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology 17:275–342CrossRefGoogle Scholar
  29. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000CrossRefGoogle Scholar
  30. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202CrossRefGoogle Scholar
  31. Solomon DH, Husni ME, Wolski KE, Wisniewski LM, Borer JS, Graham DY, Libby P, Lincoff AM, Lüscher TF, Menon V, Yeomans ND, Wang Q, Bao W, Berger MF, Nissen SE (2018) Differences in safety of nonsteroidal antiinflammatory drugs in patients with osteoarthritis and patients with rheumatoid arthritis: a randomized clinical trial. Arthritis Rheumatol 70:537–546CrossRefGoogle Scholar
  32. Stevens DL (1995) Could nonsteroidal antiinflammatory drugs (NSAIDs) enhance the progression of bacterial infections to toxic shock syndrome? Clin Infect Dis 21:977–980CrossRefGoogle Scholar
  33. Stevens DL (2000) Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51:271–288CrossRefGoogle Scholar
  34. Thomas EL, Bozeman PM, Jefferson MM, King CC (1995) Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem 270:2906–2913CrossRefGoogle Scholar
  35. Titheradge MA (1999) Nitric oxide in septic shock. Biochim Biophys Acta 1411:437–455CrossRefGoogle Scholar
  36. Walczewska M, Białecka A, Gacoń A, Pasich E, Kasprowicz A, Marcinkieiwcz J (2013) Effect of selected biofilm inhibitors, N-acetylcysteine and DNase, on some biological properties of taurine haloamines (TauCl and TauBr). Centr Eur J Immunol 38:434–442CrossRefGoogle Scholar
  37. Walczewska M, Peruń A, Białecka A, Śróttek M, Jamróz W, Dorożyński P, Jachowicz R, Kulinowski P, Nagl M, Gottardi W, Marcinkiewicz J (2017) Comparative analysis of microbicidal and anti-inflammatory properties of novel taurine bromamine derivatives and bromamine T. Adv Exp Med Biol 975:515–534CrossRefGoogle Scholar
  38. Weiss SJ, Klein R, Slivka A, Wei M (1982) Chlorination of taurine by human neutrophils: evidence for hypochlorous acid generation. J Clin Invest 70:598–603CrossRefGoogle Scholar
  39. Weng TC, Chen CC, Toh HS, Tang HJ (2011) Ibuprofen worsens Streptococcus pyogenes soft tissue infections in mice. J Microbiol Immunol Infect 44:418–423CrossRefGoogle Scholar
  40. Williams JA, Shacter E (1997) Regulation of macrophage cytokine production by prostaglandin E2. Distinct roles of cyclooxygenase-1 and -2. J Biol Chem 272:25693–25699CrossRefGoogle Scholar
  41. Zerr DM, Alexander ER, Duchin JS, Koutsky LA, Rubens CE (1999) A case-control study of necrotizing fasciitis during primary varicella. Pediatrics 103:783–790CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maria Walczewska
    • 1
  • Marta Ciszek-Lenda
    • 1
  • Angelika Peruń
    • 1
  • Aneta Kiecka
    • 1
  • Katarzyna Nazimek
    • 1
  • Anthony Kyriakopoulos
    • 2
  • Markus Nagl
    • 3
  • Waldemar Gottardi
    • 3
  • Janusz Marcinkiewicz
    • 1
    Email author
  1. 1.Chair of ImmunologyJagiellonian University Medical CollegeKrakowPoland
  2. 2.Nasco AD Biotechnology LaboratoryPiraeusGreece
  3. 3.Division of Hygiene and Medical MicrobiologyMedical University of InnsbruckInnsbruckAustria

Personalised recommendations