Taurine 11 pp 443-450 | Cite as

Protective Effects of Taurine on the Radiation Exposure Induced Cellular Damages in the Mouse Intestine

  • Takenori Yamashita
  • Toshihiro Kato
  • Tamami Isogai
  • Yeunhwa Gu
  • Ning MaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1155)


There has been a growing interest in radiation effects as a result of the Fukushima nuclear power plant accident in 2011. Exposure to ionizing radiation causes oxidizing events to different organs such as the bone marrow, intestine, and kidney, which can result in radiation-induced injuries. Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid possessing several important physiological functions, including membrane stabilization, anti-oxidative activity, anti-inflammatory effects and modulation of intracellular calcium levels. Taurine appears to be an attractive candidate for use as a radioprotector and as a radiation mitigator, but its protection mechanism against radiation-induced cell damage is still unclear until now. In this review we describe some of the mechanisms explaining the radioprotective/mitigating effects of taurine on radiation-induced cellular damage and our recent findings on this subject.


Intestine Radiation Mitigator Taurine transporter Reactive oxygen species (ROS) 





Taurine transporter


Reactive oxygen species



We thank Yui Naganuma, Yusuke Hasegawa and Riki Miyabayashi for the handling of the animals and for assistance in the drug administration part of this work. This work was supported by JSPS KAKENHI Grant Number JP 17K15809 and in part of JP 17H04654.


  1. Abe M, Takahashi M, Takeuchi K, Fukuda M (1968) Studies on the significance of taurine in radiation injury. Radiat Res 33:563–573CrossRefGoogle Scholar
  2. Anscher MS (2010) Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist 15:350–359CrossRefGoogle Scholar
  3. Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167(4):2275–2281CrossRefGoogle Scholar
  4. Bhilwade HN, Jayakumar S, Chaubey RC (2014) Age-dependent changes in spontaneous frequency of micronucleated erythrocytes in bone marrow and DNA damage in peripheral blood of Swiss mice. Mutat Res Genet Toxicol Environ Mutagen 770:80–84CrossRefGoogle Scholar
  5. Brown JM (1985) Sensitizers and protectors in radiotherapy. Cancer. 1 55(9 Suppl):2222–2228CrossRefGoogle Scholar
  6. Cetiner M, Sener G, Sehirli AO, Ekşioğlu-Demiralp E, Ercan F, Sirvanci S, Gedik N, Akpulat S, Tecimer T, Yeğen BC (2005) Taurine protects against methotrexate-induced toxicity and inhibits leucocyte death. Toxicol Appl Pharmacol 209:39–50CrossRefGoogle Scholar
  7. Chok MK, Conti M, Almolki A, Ferlicot S, Loric S, Dürrbach A, Benoît G, Droupy S, Eschwège P (2010) Renoprotective potency of amifostine in rat renal ischaemia-reperfusion. Nephrol Dial Transplant 25(12):3845–3851CrossRefGoogle Scholar
  8. Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371CrossRefGoogle Scholar
  9. Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22:5813–5827CrossRefGoogle Scholar
  10. Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30(6):513–528CrossRefGoogle Scholar
  11. Datta K, Suman S, Kallakury BV, Fornace AJ Jr (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 7(8):e42224CrossRefGoogle Scholar
  12. Dayang W, Dongbo P (2017) Taurine protects lens epithelial cells against ultraviolet B-induced apoptosis. Curr Eye Res 42(10):1407–1411CrossRefGoogle Scholar
  13. Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X (2017) Effects of yak-activated protein on hematopoiesis and related cytokines in radiation-induced injury in mice. Exp Ther Med 14(6):5297–5304PubMedPubMedCentralGoogle Scholar
  14. Fazzino F, Obregón F, Lima L (2010) Taurine and proliferation of lymphocytes in physically restrained rats. J Biomed Sci 1(17 Suppl):S24CrossRefGoogle Scholar
  15. Goyer RA, Yin MW (1967) Taurine and creatine excretion after x-irradiation and plasmocid- induced muscle necrosis in the rat. Radiat Res 30:301–306CrossRefGoogle Scholar
  16. Gridley DS, Makinde AY, Luo X, Rizvi A, Crapo JD, Dewhirst MW, Moeller BJ, Pearlstein RD, Slater JM (2007) Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res 27(5A):3101–3109PubMedGoogle Scholar
  17. Gürer H, Ozgünes H, Saygin E, Ercal N (2001) Antioxidant effect of taurine against lead-induced oxidative stress. Arch Environ Contam Toxicol 41(4):397–402CrossRefGoogle Scholar
  18. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346CrossRefGoogle Scholar
  19. Johnson CH, Patterson AD, Krausz KW, Kalinich JF, Tyburski JB, Kang DW, Luecke H, Gonzalez FJ, Blakely WF, Idle JR (2012) Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat Res 178:328–340CrossRefGoogle Scholar
  20. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232CrossRefGoogle Scholar
  21. Kato T, Okita S, Wang S, Tsunekawa M, Ma N (2015) The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats. Adv Exp Med Biol 803:773–784CrossRefGoogle Scholar
  22. Kumar KS, Srinivasan V, Toles R, Jobe L, Seed TM (2002) Nutritional approaches to radioprotection: vitamin E. Mil Med 167(2 Suppl):57–59PubMedGoogle Scholar
  23. Kwon HM, Handler JS (1995) Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7:465–471CrossRefGoogle Scholar
  24. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 15 61(10):3894–3901PubMedPubMedCentralGoogle Scholar
  25. Li Y, Kong S, Yang F, Xu W (2018) Protective effects of 2-amino-5,6-dihydro-4H-1,3-thiazine and its derivative against radiation-induced hematopoietic and intestinal injury in mice. Int J Mol Sci 21;19(5). pii: E1530CrossRefGoogle Scholar
  26. Liu Y, Li F, Zhang L, Wu J, Wang Y, Yu H (2017) Taurine alleviates lipopolysaccharide? Induced liver injury by anti? Inflammation and antioxidants in rats. Mol Med Rep 16(5):6512–6517CrossRefGoogle Scholar
  27. Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F (2010) Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J Biomed Sci 17:S7CrossRefGoogle Scholar
  28. Nagai K, Fukuno S, Oda A, Konishi H (2016) Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-Cancer Drugs 27(1):17–23CrossRefGoogle Scholar
  29. Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F (2010) Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62:185–193CrossRefGoogle Scholar
  30. Painuli S, Kumar N (2016) Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. J Ayurveda Integr Med 7(1):62–68CrossRefGoogle Scholar
  31. Petkau A (1987) Role of superoxide dismutase in modification of radiation injury. Br J Cancer Suppl 8:87–95PubMedPubMedCentralGoogle Scholar
  32. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 5 2(6):576–583CrossRefGoogle Scholar
  33. Rosen EM, Day R, Singh VK (2015) New approaches to radiation protection. Front Oncol 20(4):381Google Scholar
  34. Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, Takeuchi M, Saitoh D, Seki S, Mukai Y (2015) Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 4 10(2):e0117020CrossRefGoogle Scholar
  35. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99CrossRefGoogle Scholar
  36. Singh VK, Singh PK, Wise SY, Posarac A, Fatanmi OO (2013) Radioprotective properties of tocopherol succinate against ionizing radiation in mice. J Radiat Res 54(2):210–220CrossRefGoogle Scholar
  37. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 9 15(1):232CrossRefGoogle Scholar
  38. Suman S, Maniar M, Fornace AJ Jr, Datta K (2012) Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response. Radiat Oncol 7:6CrossRefGoogle Scholar
  39. Szejk M, Kołodziejczyk-Czepas J, Żbikowska HM (2016) Radioprotectors in radiotherapy – advances in the potential application of phytochemicals. Postepy Hig Med Dosw (Online). 30 70(0):722–734CrossRefGoogle Scholar
  40. Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N (2005) Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res 163:144–152CrossRefGoogle Scholar
  41. Veuger SJ, Hunter JE, Durkacz BW (2008) Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene. 12 28(6):832–842CrossRefGoogle Scholar
  42. Warskulat U, Reinen A, Grether-Beck S, Krutmann J, Häussinger D (2004) The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis. J Invest Dermatol 123:516–521CrossRefGoogle Scholar
  43. Wasserman TH, Brizel DM (2001) The role of amifostine as a radioprotector. Oncology (Williston Park) 15(10):1349–1354. discussion 1357-60Google Scholar
  44. Watson GM (1962) The origin of taurine excreted in the urine after whole-body irradiation. Int J Radiat Biol 5:79–83Google Scholar
  45. Yamashita T, Kato T, Tunekawa M, Gu Y, Wang S, Ma N (2017) Effect of radiation on the expression of taurine transporter in the intestine of mouse. Adv Exp Med Biol 975:729–740CrossRefGoogle Scholar
  46. Yang W, Huang J, Xiao B, Liu Y, Zhu Y, Wang F, Sun S (2017) Taurine protects mouse spermatocytes from ionizing radiation-induced damage through activation of Nrf2/HO-1 signaling. Cell Physiol Biochem 44(4):1629–1639CrossRefGoogle Scholar
  47. Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46(2):147–153CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Takenori Yamashita
    • 1
    • 2
  • Toshihiro Kato
    • 3
  • Tamami Isogai
    • 2
  • Yeunhwa Gu
    • 4
  • Ning Ma
    • 1
    Email author
  1. 1.Division of Health Science, Graduate School of Health ScienceSuzuka University of Medical ScienceSuzukaJapan
  2. 2.Faculty of Health ScienceSuzuka University of Medical ScienceSuzukaJapan
  3. 3.Department of RehabilitationSuzuka Kaisei HospitalSuzukaJapan
  4. 4.Faculty of Health ScienceJunshin Gakuen UniversityFukuokaJapan

Personalised recommendations