Different Groups of HDAC Inhibitors Based on Various Classifications

  • Shabir Ahmad Ganai


Histone deacetylase inhibitors (HDACs) tune the altered acetylation homeostasis by inhibiting the histone deacetylase (HDAC) activity. Thus they restore the acetylation homeostasis that is impaired in disease states. This chapter discusses the different groups of HDACi based on structural distinction and source. Further, the detailed account of various approved HDACi for treating various malignancies will be given. Notably, I will discuss the different structural components of a typical HDAC inhibitor.


  1. Bhuiyan MP, Kato T, Okauchi T, Nishino N, Maeda S, Nishino TG, Yoshida M (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorg Med Chem 14(10):3438–3446CrossRefGoogle Scholar
  2. Bieliauskas AV, Pflum MKH (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37(7):1402–1413. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolden JE, Shi W, Jankowski K, Kan CY, Cluse L, Martin BP, MacKenzie KL, Smyth GK, Johnstone RW (2013) HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis 4:e519CrossRefGoogle Scholar
  4. Fennell KA, Miller MJ (2007) Syntheses of amamistatin fragments and determination of their HDAC and antitumor activity. Org Lett 9(9):1683–1685CrossRefGoogle Scholar
  5. Fennell KA, Mollmann U, Miller MJ (2008) Syntheses and biological activity of amamistatin B and analogs. J Org Chem 73(3):1018–1024CrossRefGoogle Scholar
  6. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193CrossRefGoogle Scholar
  7. Ganai SA (2014) In silico approaches towards safe targeting of class I histone deacetylases. In: Wells RD, Bond JS, Klinman J, Masters BSS, Bell E (eds) Molecular life sciences: an encyclopedic reference. Springer New York, New York, pp 1–9Google Scholar
  8. Ganai SA (2016a) Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 28(4):247–254CrossRefGoogle Scholar
  9. Ganai SA (2016b) Histone deacetylase inhibitor sulforaphane: the phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 81:250–257CrossRefGoogle Scholar
  10. Ganai SA (2016c) Panobinostat: the small molecule metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem 16(4):427–434CrossRefGoogle Scholar
  11. Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139(12):2393–2396CrossRefGoogle Scholar
  12. Iyer SP, Foss FF (2015) Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist 20(9):1084–1091. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Johnson NM, Farr GH 3rd, Maves L (2013) The HDAC inhibitor TSA ameliorates a zebrafish model of Duchenne muscular dystrophy. PLoS Curr 17(5).
  14. Kalyaanamoorthy S, Chen YP (2013) Energy based pharmacophore mapping of HDAC inhibitors against class I HDAC enzymes. Biochim Biophys Acta 1:317–328CrossRefGoogle Scholar
  15. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409(2):581–589CrossRefGoogle Scholar
  16. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268(30):22429–22435PubMedGoogle Scholar
  17. Lee HZ, Kwitkowski VE, Del Valle PL, Ricci MS, Saber H, Habtemariam BA, Bullock J, Bloomquist E, Li Shen Y, Chen XH, Brown J, Mehrotra N, Dorff S, Charlab R, Kane RC, Kaminskas E, Justice R, Farrell AT, Pazdur R (2015) FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin Cancer Res 21(12):2666–2670CrossRefGoogle Scholar
  18. Lu X, Ning Z, Li Z, Cao H, Wang X (2016) Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis Res 5(3):185–191CrossRefGoogle Scholar
  19. Ma N, Luo Y, Wang Y, Liao C, Ye WC, Jiang S (2016) Selective histone deacetylase inhibitors with anticancer activity. Curr Top Med Chem 16(4):415–426CrossRefGoogle Scholar
  20. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252CrossRefGoogle Scholar
  21. Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46(24):5097–5116CrossRefGoogle Scholar
  22. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941CrossRefGoogle Scholar
  23. Noureen N, Rashid H, Kalsoom S (2010) Identification of type-specific anticancer histone deacetylase inhibitors: road to success. Cancer Chemother Pharmacol 66(4):625–633CrossRefGoogle Scholar
  24. VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH (2011) Romidepsin (Istodax®, NSC 630176, FR901228, FK228, Depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot 64(8):525–531CrossRefGoogle Scholar
  25. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin a. J Biol Chem 265(28):17174–17179PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations