Advertisement

Implications of HDACs in Neurological Disorders

  • Shabir Ahmad Ganai
Chapter

Abstract

Histone acetyl transferases (HATs) and histone deacetylases (HDACs), the functionally opposite enzymes, regulate the turnover of histone acetylation. This acetylation homeostasis in turn plays a key role in tuning gene expression. Aberrant activity of HDACs impairs this homeostasis resulting in transcriptional deregulation which in turn culminates in neuronal dysfunction. Here we discuss the implications of various HDACs in neurological disorders like Alzheimer’s disease, Huntington disease, Rett syndrome, and amyotrophic lateral sclerosis.

References

  1. Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 29(25):8288–8297CrossRefGoogle Scholar
  2. Bardai FH, D’Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31(5):1746–1751CrossRefGoogle Scholar
  3. Bardai FH, Price V, Zaayman M, Wang L, D’Mello SR (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287(42):35444–35453CrossRefGoogle Scholar
  4. Bardai FH, Verma P, Smith C, Rawat V, Wang L, D’Mello SR (2013) Disassociation of histone deacetylase-3 from normal huntingtin underlies mutant huntingtin neurotoxicity. J Neurosci 33(29):11833–11838CrossRefGoogle Scholar
  5. Bates EA, Victor M, Jones AK, Shi Y, Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26(10):2830–2838CrossRefGoogle Scholar
  6. Bolger TA, Yao T-P (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 25(41):9544–9553.  https://doi.org/10.1523/jneurosci.1826-05.2005 CrossRefPubMedGoogle Scholar
  7. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci 31(1):47–58CrossRefGoogle Scholar
  8. Bruneteau G, Simonet T, Bauche S, Mandjee N, Malfatti E, Girard E, Tanguy ML, Behin A, Khiami F, Sariali E, Hell-Remy C, Salachas F, Pradat PF, Fournier E, Lacomblez L, Koenig J, Romero NB, Fontaine B, Meininger V, Schaeffer L, Hantai D (2013) Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136(Pt 8):2359–2368CrossRefGoogle Scholar
  9. Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5(5):0010848CrossRefGoogle Scholar
  10. d’Ydewalle C, Bogaert E, Van Den Bosch L (2012) HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic 13(6):771–779CrossRefGoogle Scholar
  11. Ding H, Dolan PJ, Johnson GV (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106(5):2119–2130CrossRefGoogle Scholar
  12. Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583CrossRefGoogle Scholar
  13. Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6(64):1750–1326Google Scholar
  14. Gal J, Chen J, Barnett KR, Yang L, Brumley E, Zhu H (2013) HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem 288(21):15035–15045CrossRefGoogle Scholar
  15. Ganai SA (2017) Small-molecule modulation of HDAC6 activity: the propitious therapeutic strategy to vanquish neurodegenerative disorders. Curr Med Chem 8(81646).  https://doi.org/10.2174/0929867324666170209104030
  16. Gray SG (2011) Targeting Huntington’s disease through histone deacetylases. Clin Epigenetics 2(2):257–277CrossRefGoogle Scholar
  17. Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60CrossRefGoogle Scholar
  18. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458CrossRefGoogle Scholar
  19. Korner S, Boselt S, Thau N, Rath KJ, Dengler R, Petri S (2013) Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener Dis 11(3):141–152CrossRefGoogle Scholar
  20. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31(2):764–774CrossRefGoogle Scholar
  21. Muchowski PJ, Ning K, D’Souza-Schorey C, Fields S (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci U S A 99(2):727–732CrossRefGoogle Scholar
  22. Neul JL (2012) The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 14(3):253–262PubMedPubMedCentralGoogle Scholar
  23. Pohodich AE, Zoghbi HY (2015) Rett syndrome: disruption of epigenetic control of postnatal neurological functions. Hum Mol Genet 24:R1):9CrossRefGoogle Scholar
  24. Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychopharmacol Biol Psychiatry 72:60–72CrossRefGoogle Scholar
  25. Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, Ratan RR, Langley B (2009) HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci 106(46):19599–19604CrossRefGoogle Scholar
  26. Samaco RC, Neul JL (2011) Complexities of Rett syndrome and MeCP2. J Neurosci 31(22):7951–7959CrossRefGoogle Scholar
  27. Taes I, Timmers M, Hersmus N, Bento-Abreu A, Van Den Bosch L, Van Damme P, Auwerx J, Robberecht W (2013) Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 22(9):1783–1790CrossRefGoogle Scholar
  28. Valle C, Salvatori I, Gerbino V, Rossi S, Palamiuc L, René F, Carrì MT (2014) Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis 5:e1296CrossRefGoogle Scholar
  29. Volmar C-H, Wahlestedt C (2015) Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1:20–27CrossRefGoogle Scholar
  30. Xu K, Dai X-L, Huang H-C, Jiang Z-F (2011) Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxidative Med Cell Longev 2011:5CrossRefGoogle Scholar
  31. Xu X, Kozikowski AP, Pozzo-Miller L (2014) A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome. Front Cell Neurosci 8:68PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations