Epigenetic Enzymes and Drawbacks of Conventional Therapeutic Regimens

  • Shabir Ahmad Ganai


Post-translational modifications of histone proteins have noticeable role in passive chromatin remodelling. These modifications mainly include histone acetylation, methylation, phosphorylation etc. Methylation of DNA cytosine is also regarded as epigenetic modifications as it causes gene repression by recruiting HDACs. This chapter gives the bird’s eye view of writers and erasers of epigenetic modifications. Among the writers, special emphasis has been given to histone acetyl transferases, protein methyltransferases and DNA methyltransferases. Regarding erasers, histone deacetylases, demethylases and DNA demethylases are specially elaborated. Moreover, the current impediments in the therapeutic intervention of neurological disorders are also taken into account. Importantly, the drawbacks of traditional therapeutic regimens against the neurological complications will also be discussed.


  1. Adhvaryu KK, Selker EU (2008) Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev 22(24):3391–3396PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  4. Black JC, Van Rechem C, Whetstine Johnathan R (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507PubMedCrossRefGoogle Scholar
  5. Carey N, Marques CJ, Reik W (2011) DNA demethylases: a new epigenetic frontier in drug discovery. Drug Discov Today 16(15–16):683–690PubMedCrossRefGoogle Scholar
  6. Chen CC, Wang KY, Shen CK (2013) DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288(13):9084–9091PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fedoriw A, Mugford J, Magnuson T (2012) Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol 4(7):a008136PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ganai SA (2016a) Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 28(4):247–254PubMedCrossRefGoogle Scholar
  9. Ganai SA (2016b) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54(9):1926–1935PubMedCrossRefGoogle Scholar
  10. Ganai SA (2016c) Panobinostat: the small molecule Metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem 16(4):427–434PubMedCrossRefGoogle Scholar
  11. Ganai SA, Kalladi SM, Mahadevan V (2015) HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 33(6):1185–1197PubMedCrossRefGoogle Scholar
  12. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348PubMedCrossRefGoogle Scholar
  13. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40(11):4841–4849PubMedPubMedCentralCrossRefGoogle Scholar
  15. Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38(12):621–639PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–291PubMedCrossRefGoogle Scholar
  17. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10(10):429–439PubMedCrossRefGoogle Scholar
  18. Jin B, Robertson KD (2013) DNA methyltransferases (DNMTs), DNA damage repair, and cancer. Adv Exp Med Biol 754:3–29PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191PubMedCrossRefGoogle Scholar
  20. Kanwar JR, Sriramoju B, Kanwar RK (2012) Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine 7:3259–3278PubMedPubMedCentralCrossRefGoogle Scholar
  21. Karmodiya K, Anamika K, Muley V, Pradhan SJ, Bhide Y, Galande S (2014) Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Sci Rep 4:6076PubMedPubMedCentralCrossRefGoogle Scholar
  22. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116(2):259–272PubMedCrossRefGoogle Scholar
  23. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kubota T, Miyake K, Hirasawa T (2012) Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 4(1):1–1PubMedPubMedCentralCrossRefGoogle Scholar
  25. Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 4(10):944–947PubMedPubMedCentralCrossRefGoogle Scholar
  26. Li T, Du Y, Wang L, Huang L, Li W, Lu M, Zhang X, Zhu WG (2012) Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 11(1):30CrossRefGoogle Scholar
  27. Lorenzo AD, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031PubMedCrossRefGoogle Scholar
  28. Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723PubMedCrossRefGoogle Scholar
  29. Morera L, Lübbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57PubMedPubMedCentralCrossRefGoogle Scholar
  30. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220PubMedCrossRefGoogle Scholar
  31. Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62(1):11–33PubMedPubMedCentralCrossRefGoogle Scholar
  32. Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379. (Pt 3:513–525PubMedPubMedCentralCrossRefGoogle Scholar
  33. Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671PubMedCrossRefGoogle Scholar
  34. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22(23):8353–8365PubMedPubMedCentralCrossRefGoogle Scholar
  35. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30(7):733–750. PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599PubMedCrossRefGoogle Scholar
  37. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404(6781):1003–1007PubMedCrossRefGoogle Scholar
  38. Richman R, Chicoine LG, Collini MP, Cook RG, Allis CD (1988) Micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase activity which is highly specific for free histone H4. J Cell Biol 106(4):1017–1026PubMedCrossRefGoogle Scholar
  39. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27(11):2291–2298PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sara B, Rupinder Kaur K, Khashayar K, Punj V, Chauhan A, Matta H, Andrew P, Subramanian K, Xueying S, Sanjeeb KS, Jagat Rakesh K (2009) Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr Nanosci 5(1):15–25CrossRefGoogle Scholar
  41. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713PubMedPubMedCentralCrossRefGoogle Scholar
  42. Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y, Antonarakis SE (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21(10):1592–1600PubMedPubMedCentralCrossRefGoogle Scholar
  43. Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF, Gray SJ, Lowenstein PR, Vandenberghe LH, Wilson TJ, Wolfe JH, Glorioso JC (2013) Progress in gene therapy for neurological disorders. Nat Rev Neurol 9(5):277–291PubMedPubMedCentralCrossRefGoogle Scholar
  44. Vertino PM, Yen RW, Gao J, Baylin SB (1996) De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 16(8):4555–4565PubMedPubMedCentralCrossRefGoogle Scholar
  45. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653–663PubMedCrossRefGoogle Scholar
  46. Yang Y, Bedford MT (2012) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37PubMedCrossRefGoogle Scholar
  47. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations