Advertisement

Epigenetics and its Implications in Neurological Disorders

  • Shabir Ahmad Ganai
Chapter

Abstract

Epigenetic players perform a significant role in governing gene expression programs as they precisely regulate the various post-translational modifications of histone and non-histone substrates. Epigenetic dysregulation due to aberrant activity of these players alters homeostasis provoking neurological complications. Here I discuss the amendments of the definition of epigenetics over time and the various post-translational modifications that histone proteins undergo. Moreover, the altered activity and expression of various epigenetic enzymes in distinct neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis (ALS) will be thoroughly discussed.

References

  1. Ammal Kaidery N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson's disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10(4):698–708PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barsoum J, Varshavsky A (1985) Preferential localization of variant nucleosomes near the 5′-end of the mouse dihydrofolate reductase gene. J Biol Chem 260(12):7688–7697PubMedGoogle Scholar
  3. Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273(21):13165–13169PubMedCrossRefGoogle Scholar
  4. Chen S, Zhang X-J, Li L-X, Wang Y, Zhong R-J, Le W (2015) Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Bull 31(4):459–468.  https://doi.org/10.1007/s12264-015-1539-3 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636PubMedPubMedCentralCrossRefGoogle Scholar
  6. Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296(5571):1254–1258PubMedCrossRefGoogle Scholar
  7. D'Oto A, Q-w T, Davidoff AM, Yang J (2016) Histone demethylases and their roles in cancer epigenetics. Journal of medical oncology and therapeutics 1(2):34–40PubMedPubMedCentralGoogle Scholar
  8. Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–829PubMedPubMedCentralCrossRefGoogle Scholar
  9. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037PubMedPubMedCentralCrossRefGoogle Scholar
  10. Di Fiore PP, Polo S, Hofmann K (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 4(6):491–497PubMedCrossRefGoogle Scholar
  11. Draker R, Cheung P (2009) Transcriptional and epigenetic functions of histone variant H2A. Z Biochem Cell Biol 87(1):19–25CrossRefGoogle Scholar
  12. Farris SD, Rubio ED, Moon JJ, Gombert WM, Nelson BH, Krumm A (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem 280(26):25298–25303PubMedCrossRefGoogle Scholar
  13. Feng J, Fouse S, Fan G (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res 61:58R.  https://doi.org/10.1203/pdr.0b013e3180457635 PubMedCrossRefGoogle Scholar
  14. Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, Yung R, Ruden DM, Callaghan BC, Feldman EL (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 7(12):e52672PubMedPubMedCentralCrossRefGoogle Scholar
  15. Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K (2017) Contribution of Neuroepigenetics to Huntington’s disease. Front Hum Neurosci 11(17).  https://doi.org/10.3389/fnhum.2017.00017
  16. Francis YI, Fa M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J Alzheimers Dis 18(1):131–139PubMedCrossRefGoogle Scholar
  17. Ganai SA (2016a) Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 28(4):247–254CrossRefGoogle Scholar
  18. Ganai SA (2016b) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54(9):1926–1935CrossRefGoogle Scholar
  19. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282PubMedCrossRefGoogle Scholar
  20. Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL (2003) Nuclear localization of α-Synuclein and its interaction with histones. Biochemistry 42(28):8465–8471PubMedCrossRefGoogle Scholar
  21. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638PubMedCrossRefGoogle Scholar
  22. Hall JR, Strathdee CA (2000) Disease-associated mutations in SOD1 are impervious to dominant positive or negative effects. Biochem Biophys Res Commun 276(3):1056–1061PubMedCrossRefGoogle Scholar
  23. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071PubMedCrossRefGoogle Scholar
  24. Helt CE, Cliby WA, Keng PC, Bambara RA, O'Reilly MA (2005) Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280(2):1186–1192PubMedCrossRefGoogle Scholar
  25. Hervás-Corpión I, Guiretti D, Alcaraz-Iborra M, Olivares R, Campos-Caro A, Barco Á, Valor LM (2018) Early alteration of epigenetic-related transcription in Huntington’s disease mouse models. Sci Rep 8(1):9925.  https://doi.org/10.1038/s41598-018-28185-4 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Holliday R (1994) Epigenetics: an overview. Dev Genet 15(6):453–457PubMedCrossRefGoogle Scholar
  27. Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW (2016) Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging 8(7):1485–1512PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jarome TJ, Thomas JS, Lubin FD (2014) The epigenetic basis of memory formation and storage. Prog Mol Biol Transl Sci 128:1–27PubMedCrossRefGoogle Scholar
  29. Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosom Res 14(4):393–404CrossRefGoogle Scholar
  30. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116(2):259–272CrossRefGoogle Scholar
  31. Kim MO, Chawla P, Overland RP, Xia E, Sadri-Vakili G, Cha JH (2008) Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. J Neurosci 28(15):3947–3957PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kontopoulos E, Parvin JD, Feany MB (2006) α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023PubMedCrossRefGoogle Scholar
  33. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4):276–284PubMedCrossRefGoogle Scholar
  34. Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J, MacDonald ME, Gusella JF, Chen JF, Akbarian S, Weng Z, Myers RH (2016 Jul 25) Correction: RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 11(7):e0160295PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116. (Pt 11:2117–2124PubMedCrossRefGoogle Scholar
  36. Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 27:9–58Google Scholar
  37. LaSalle JM, Powell WT, Yasui DH (2013) Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 36(8):460–470PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108(7):2801–2806PubMedPubMedCentralCrossRefGoogle Scholar
  39. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773PubMedCrossRefGoogle Scholar
  40. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6(2):108–118PubMedCrossRefGoogle Scholar
  41. Levinger L, Varshavsky A (1982) Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28(2):375–385PubMedCrossRefGoogle Scholar
  42. Liu Q, Wang M-w (2016) Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol Sin 37(10):1273–1280.  https://doi.org/10.1038/aps.2016.64 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893PubMedCrossRefGoogle Scholar
  44. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 32(7):1161–1180PubMedPubMedCentralCrossRefGoogle Scholar
  45. McFarland KN, Das S, Sun TT, Leyfer D, Xia E, Sangrey GR, Kuhn A, Luthi-Carter R, Clark TW, Sadri-Vakili G, Cha J-HJ (2012) Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease. PLoS One 7(7):e41423PubMedPubMedCentralCrossRefGoogle Scholar
  46. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38PubMedCrossRefGoogle Scholar
  47. Nanney DL (1958) Epigenetic control systems. Proc Natl Acad Sci U S A 44(7):712–717PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nickel BE, Davie JR (1989) Structure of polyubiquitinated histone H2A. Biochemistry 28(3):964–968PubMedCrossRefGoogle Scholar
  49. Park C-H, Kim K-T (2012) Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ. PLoS One 7(9):e44307PubMedPubMedCentralCrossRefGoogle Scholar
  50. Park S-M, Choi E-Y, Bae M, Kim S, Park JB, Yoo H, Choi JK, Kim Y-J, Lee S-H, Kim I-H (2016) Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 7:12914PubMedPubMedCentralCrossRefGoogle Scholar
  51. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756PubMedCrossRefGoogle Scholar
  52. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533PubMedCrossRefGoogle Scholar
  53. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868PubMedCrossRefGoogle Scholar
  54. Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci U S A 103(50):19176–19181PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P, Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW, Yohrling GJ, Cha JH (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 16(11):1293–1306PubMedCrossRefGoogle Scholar
  56. Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19(7):804–814PubMedPubMedCentralCrossRefGoogle Scholar
  57. Song J, Kim J (2016) Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Front Aging Neurosci 8:65PubMedPubMedCentralCrossRefGoogle Scholar
  58. Thomas B, Matson S, Chopra V, Sun L, Sharma S, Hersch S, Rosas HD, Scherzer C, Ferrante R, Matson W (2013) A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal Biochem 436(2):112–120PubMedPubMedCentralCrossRefGoogle Scholar
  59. Thorne AW, Sautiere P, Briand G, Crane-Robinson C (1987) The structure of ubiquitinated histone H2B. EMBO J 6(4):1005–1010PubMedPubMedCentralCrossRefGoogle Scholar
  60. Valle C, Salvatori I, Gerbino V, Rossi S, Palamiuc L, René F, Carrì MT (2014) Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis 5:e1296CrossRefGoogle Scholar
  61. Vashishtha M, Ng CW, Yildirim F, Gipson TA, Kratter IH, Bodai L, Song W, Lau A, Labadorf A, Vogel-Ciernia A, Troncosco J, Ross CA, Bates GP, Krainc D, Sadri-Vakili G, Finkbeiner S, Marsh JL, Housman DE, Fraenkel E, Thompson LM (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci USA 110(32):19CrossRefGoogle Scholar
  62. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 a resolution. J Mol Biol 194(3):531–544PubMedCrossRefGoogle Scholar
  63. Waddington CH (1968) Towards a theoretical biology. Nature 218(5141):525–527PubMedCrossRefGoogle Scholar
  64. Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13PubMedCrossRefGoogle Scholar
  65. Wang F, Fischhaber PL, Guo C, Tang TS (2014) Epigenetic modifications as novel therapeutic targets for Huntington's disease. Epigenomics 6(3):287–297PubMedCrossRefGoogle Scholar
  66. Wu C, Morris JR (2001 Aug 10) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations