Advertisement

Imaging and Therapy Against Hypoxic Tumors with 64Cu-ATSM

  • Yasuhisa FujibayashiEmail author
  • Yukie Yoshii
  • Takako Furukawa
  • Mitsuyoshi Yoshimoto
  • Hiroki Matsumoto
  • Tsuneo Saga
Open Access
Conference paper

Abstract

Hypoxia in tumors is known to contribute to the malignant characteristics such as therapy resistance and metastatic potential. Cu-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM), labeled with several Cu radioisotopes (60Cu, 62Cu and 64Cu) is a potential PET imaging agent that targets tumor hypoxia with over-reduced conditions. Clinical studies of Cu-ATSM PET has been conducted worldwide in recent years and the usefulness of this agent is being recognized. Multicenter clinical study of 62Cu-ATSM PET has been conducted in Japan. Among Cu-ATSM tracers, 64Cu-ATSM can be used not only as a PET imaging agent but also as a therapeutic agent, because 64Cu emits β particle and Auger electron, which can damage the cells. Here, we will discuss the present status and future prospects of Cu-ATSM.

Keywords

Cu-ATSM Hypoxia Internal radiotherapy PET 

29.1 Radiolabeled Cu-ATSM as a Hypoxia Imaging Agent for PET

In tumors, hypoxia frequently occurs due to poor vascularization and tight packing of cancer cells. Tumor hypoxia is associated with adverse prognosis due to failures in radiotherapy and chemotherapy and to tumor metastasis (Brown 1999). It is thus important to develop methods for diagnosis and therapy of hypoxic tumors. Noninvasive methods to detect hypoxic tumor have been intensively developed (Padhani et al. 2007).

We have developed a novel positron emission tomography (PET) imaging agent, Cu-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM), which can target tumor hypoxia with over-reduced conditions. Cu-ATSM can be labeled with several Cu radioisotopes, such as 60Cu, 62Cu and 64Cu (Dehdashti et al. 2008; Fujibayashi et al. 1997, 1999; Lewis et al. 2001; Obata et al. 2001, 2005; Yoshii et al. 2012). Cu-ATSM is reported to accumulate in hypoxic environments in many kinds of tumor cells in vitro (Obata et al. 2005; Lewis et al. 1999; Burgman et al. 2005). Distribution of Cu-ATSM in tumor tissues differs from that of 18F-fluorodeoxyglucose (18FDG), a commonly used PET imaging tracer of glucose uptake (Obata et al. 2003; Tanaka et al. 2006). Cu-ATSM shows its high uptake in regions that are hypovascular, undergoing cell cycle arrest but little necrosis, while 18FDG accumulates regions of hypervascularity and cell proliferation going to necrosis (Obata et al. 2003; Tanaka et al. 2006). The mechanism of Cu-ATSM accumulation in hypoxic regions has been reported (Fujibayashi et al. 1997; Obata et al. 2001; Burgman et al. 2005; Dearling et al. 2002; Holland et al. 2009). Cu-ATSM, a rigid complex of Cu(II) and ATSM, is easily divided by reduction of Cu(II) to Cu(I) and trapped into the cells under highly reduced intracellular conditions such as hypoxia (Fujibayashi et al. 1997; Obata et al. 2001; Burgman et al. 2005; Dearling et al. 2002). Cu-ATSM rapidly diffuses into cells and tissues even in low perfusion areas and is trapped within cells under highly reduced conditions such as hypoxia (Fujibayashi et al. 1997, 1999; Obata et al. 2001; Yoshii et al. 2012; Holland et al. 2009; Bowen et al. 2011). Preclinical studies have revealed that Cu-ATSM uptake increases with higher intracellular levels of the biological reductant NAD(P)H, which is associated with hypoxia and mitochondrial dysfunction, and activity of NAD(P)H-dependent reductive enzymes, rather than oxygenic conditions (Obata et al. 2001; Yoshii et al. 2012; Holland et al. 2009; Bowen et al. 2011).

In recent years, clinical PET studies using radiolabeled Cu-ATSM have been conducted for many types of cancers throughout the world. In Japan, our institute produced a generator system of 62Cu and multicenter clinical studies of 62Cu-ATSM PET have been conducted using our system. These clinical studies have shown that Cu-ATSM uptake is associated with therapeutic resistance, metastatic potential, and poor prognosis in several types of cancer (Dehdashti et al. 2008; Dietz et al. 2008; Lewis et al. 2008; Sato et al. 2014; Tateishi et al. 2013). Cu-ATSM uptake is correlated with high HIF-1α expression in patients’ glioma (Tateishi et al. 2013). These clinical studies have demonstrated that tumor hypoxia assessed by Cu-ATSM uptake is associated with the tumors’ malignant behaviors (Dehdashti et al. 2003, 2008; Dietz et al. 2008; Grigsby et al. 2007).

29.2 64Cu-ATSM as a Theranostic Agent

64Cu-ATSM can be used as a “theranostic” agent. Namely, this agent can be applied not only as a PET imaging agent but also as an internal radiotherapy agent against tumors, since 64Cu shows β+ decay (0.653 MeV, 17.4%) as well as β decay (0.574 MeV, 40%) and electron capture (42.6%). The photons from electron-positron annihilation can be detected by PET, while the β particles and Auger electrons emitted from this nuclide can damage tumor cells (Lewis et al. 2001; Obata et al. 2005; Yoshii et al. 2011; Yoshii et al. 2016). In addition, the half-life of 64Cu (t1/2 = 12.7 h) is appropriate for both diagnostic and therapeutic use. 64Cu is a practical nuclide for the use of both diagnosis and therapy, because it can be readily produced with an in-hospital small cyclotron. The therapeutic effect of 64Cu-ATSM has been demonstrated in both in vitro (Obata et al. 2005) and in vivo studies (Lewis et al. 2001; Aft et al. 2003). 64Cu-ATSM reduces the clonogenic survival of tumor cells under hypoxia by inducing post-mitotic apoptosis (Obata et al. 2005). This is caused by heavy damage to DNA via high-linear energy transfer (LET) Auger electrons emitted from 64Cu (McMillan et al. 2015). An in vivo study using tumor-bearing hamsters demonstrated that 64Cu-ATSM treatment increased survival time without severe toxicity (Lewis et al. 2001). These previous studies supported the feasibility of 64Cu-ATSM treatment against hypoxic tumors with high-LET radiation.

29.3 64Cu-ATSM Theranostics for Cancer Stem Cells

We have demonstrated that 64Cu-ATSM preferentially localizes in intratumoral regions with a high density of CD133+ cells, which show characteristics of cancer stem cells or cancer stem cell-like cells (CSCs) and showed therapeutic effect against CSCs in a mouse colon carcinoma (Colon-26) and human colon carcinoma (HT-29) models (Yoshii et al. 2011; Yoshii et al. 2016; Yoshii et al. 2010). In these studies, 64Cu-ATSM treatment inhibited tumor growth, and the percentage of CD133+ cells and metastatic ability in 64Cu-ATSM treated tumors were decreased compared to that in non-treated control tumors. 64Cu-ATSM accumulated in the cells under hypoxic conditions and incorporation of 64Cu-ATSM under hypoxia caused cell death in both CD133+ and CD133 cells. We have demonstrated that the intratumoral 64Cu-ATSM high-uptake regions exhibited upregulation of DNA repair, which results in therapeutic resistance. 64Cu-ATSM high-uptake regions showed upregulation of pathways related to DNA repair along with nucleic acid incorporation (bromodeoxyuridine uptake). In addition, combination use of nucleic acid antimetabolites, such as a pyrimidine analog 5-fluorouracil, a purine analog 6-thioguanine, and a folate analog pemetrexed, enhanced the efficacy of 64Cu-ATSM internal radiotherapy by inhibiting DNA repair and effectively reduced %CD133+ CSCs. Therefore, our study suggested that co-administration of 64Cu-ATSM and nucleic acid antimetabolites could have a potential to cure tumor malignant environment and CSCs.

29.4 Biodistribution and Dosimetry of 64Cu-ATSM

We have examined biodistribution of 64Cu-ATSM using mice and performed dosimetry analysis. Relatively high accumulation of 64Cu was observed in the liver, small intestine, and large intestine among normal organs. 64Cu were mainly excreted in the feces, but little urinary excretion was observed. Our dosimetry analysis demonstrated that the liver, ovaries, and red marrow should be considered as dose-limiting organs in 64Cu-ATSM internal radiotherapy. For clinical applications, we have developed a strategy to reduce radiation doses to these critical organs while preserving tumor radiation doses by the appropriately scheduled administration of copper chelator penicillamine during 64Cu-ATSM internal radiotherapy (Yoshii et al. 2014). In this method, penicillamine was orally administered at 1 h after 64Cu-ATSM injection, when radioactivity was almost cleared from the blood and tumor uptake had plateaued. Using this method, penicillamine decreased 64Cu accumulation in the critical organs, while maintaining tumor uptake.

29.5 This Project

Anti-VEGF antibody bevacizumab is an antiangiogenic agent in widespread clinical use for cancer. Despite the initial positive effect of this treatment, continued use of bevacizumab induces hypoxia and makes tumors malignant. Thus, additional strategies to treat the hypoxia during bevacizumab therapy are needed. In this project, we are developing a method to detect and treat tumors that became malignant by acquiring decreased vascularity and hypoxia, during antiangiogenic bevacizumab treatment, with 64Cu-ATSM.

29.6 Development of a Method to Detect Vascularity and Hypoxia In Vivo

Recently, an imaging technology with single-photon emission computed tomography/positron emission tomography/computed tomography (SPECT/PET/CT) to obtain simultaneous images using two different tracers labeled with SPECT and PET nuclides with CT has been developed. By applying the SPECT/PET/CT technology, we developed a method to simultaneously visualize vascularity and hypoxia with 99mTc-labeled human serum albumin (99mTc-HSA) to detect blood pool, and 64Cu-ATSM to detect hypoxia (Adachi et al. 2016). In this study, we performed in vivo imaging experiments using the VECTor SPECT/PET/CT small-animal scanner (MILabs) with HT-29 tumor-bearing mice. 64Cu-ATSM (37 MBq) and 99mTc-HSA (18.5 MBq) were intravenously injected into a mouse at 1 h and 10 min, respectively, before scanning for 20 min. The 99mTc/64Cu dual-isotope SPECT/PET/CT images were then obtained. In vivo SPECT/PET/CT imaging with 64Cu-ATSM and 99mTc-HSA visualized distribution of each probe and showed that 64Cu-ATSM high-uptake regions barely overlapped with 99mTc-HSA high-uptake regions within non-treated HT-29 tumors (Fig. 29.1).
Fig. 29.1

In vivo SPECT/PET/CT imaging with 64Cu-ATSM and 99mTc-HSA

To obtain a bevacizumab-treated tumor model, HT-29 tumor-bearing mice were treated with bevacizumab (5 mg/kg twice a week) for 3 weeks. Using this model, dual-isotope SPECT/PET/CT imaging with 99mTc-HSA and 64Cu-ATSM was performed to check tumor vascularity and hypoxia. For comparison, un-treated tumors that showed similar size to bevacizumab-treated tumor model, were used. From imaging study, bevacizumab-treated tumors showed reduced vascularity and increased proportion of hypoxic areas within tumors.

29.7 64Cu-ATSM Therapy

For treatment study, 64Cu-ATSM (37 MBq) or saline was intravenously injected into mice with bevacizumab-treated mice (bevacizumab+64Cu-ATSM or bevacizumab group). For comparison, a group without bevacizumab-treatment (64Cu-ATSM alone) and un-treated control were also examined. Bevacizumab+64Cu-ATSM group showed the greater inhibition of tumor growth, compared with bevacizumab group, 64Cu-ATSM alone group, and un-treated control, without side effect. Therefore, our data demonstrated that 64Cu-ATSM therapy effectively inhibited tumor growth in bevacizumab-treated HT-29 tumors. 64Cu-ATSM therapy could be a novel approach as an add-on to antiangiogenic therapy with bevacizumab (Fig. 29.2).
Fig. 29.2

64Cu-ATSM therapy as an add-on to antiangiogenic therapy with bevacizumab

29.8 Conclusion

We have seen that 64Cu-ATSM is a promising theranostic agent targeting tumor hypoxia, which is related to tumor malignant behaviors, such as therapy resistance, metastatic potential, existence of cancer stem cells. 64Cu-ATSM has unique characteristics to target tumor malignant behaviors. Therefore, 64Cu-ATSM would be useful to cure malignant tumors due to hypoxia.

Supplementary material

Video S3-9

(MP4 465091 kb)

References

  1. Adachi N, Yoshii Y, Furukawa T, Yoshimoto M, Takeuchi Y, Inubushi M, Wakizaka H, Zhang MR, Tsuji AB, Takahashi M, Fujibayashi Y, Saga T (2016) In vivo simultaneous imaging of vascular pool and hypoxia with a HT-29 tumor model: the application of dual-isotope SPECT/PET/CT. Int J Sci 25:26–39Google Scholar
  2. Aft RL, Lewis JS, Zhang F, Kim J, Welch MJ (2003) Enhancing targeted radiotherapy by copper(II)diacetyl- bis(N 4-methylthiosemicarbazone) using 2-deoxy-D-glucose. Cancer Res 63:5496–5504PubMedGoogle Scholar
  3. Bowen SR, van der Kogel AJ, Nordsmark M, Bentzen SM, Jeraj R (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38:771–780CrossRefGoogle Scholar
  4. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870PubMedGoogle Scholar
  5. Burgman P, O’Donoghue JA, Lewis JS, Welch MJ, Humm JL, Ling CC (2005) Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM. Nucl Med Biol 32:623–630CrossRefGoogle Scholar
  6. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259CrossRefGoogle Scholar
  7. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238CrossRefGoogle Scholar
  8. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N 4-methylthiosemicarbazone). J Nucl Med 49:201–205CrossRefGoogle Scholar
  9. Dietz DW, Dehdashti F, Grigsby PW, Malyapa RS, Myerson RJ, Picus J, Ritter J, Lewis JS, Welch MJ, Siegel BA (2008) Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum 51:1641–1648CrossRefGoogle Scholar
  10. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160PubMedGoogle Scholar
  11. Fujibayashi Y, Cutler CS, Anderson CJ, McCarthy DW, Jones LA, Sharp T, Yonekura Y, Welch MJ (1999) Comparative studies of Cu-64-ATSM and C-11-acetate in an acute myocardial infarction model: ex vivo imaging of hypoxia in rats. Nucl Med Biol 26:117–121CrossRefGoogle Scholar
  12. Grigsby PW, Malyapa RS, Higashikubo R, Schwarz JK, Welch MJ, Huettner PC, Dehdashti F (2007) Comparison of molecular markers of hypoxia and imaging with 60Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol 9:278–283CrossRefGoogle Scholar
  13. Holland JP, Giansiracusa JH, Bell SG, Wong LL, Dilworth JR (2009) In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals. Phys Med Biol 54:2103–2119CrossRefGoogle Scholar
  14. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183PubMedGoogle Scholar
  15. Lewis JS, Laforest R, Buettner T, Song S, Fujibayashi Y, Connett J, Welch M (2001) Copper-64-diacetyl-bis(N 4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci U S A 98:1206–1211CrossRefGoogle Scholar
  16. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–1182CrossRefGoogle Scholar
  17. McMillan DD, Maeda J, Bell JJ, Genet MD, Phoonswadi G, Mann KA, Kraft SL, Kitamura H, Fujimori A, Yoshii Y, Furukawa T, Fujibayashi Y, Kato TA (2015) Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res 56:784–791CrossRefGoogle Scholar
  18. Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N 4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15:499–504CrossRefGoogle Scholar
  19. Obata A, Yoshimoto M, Kasamatsu S, Naiki H, Takamatsu S, Kashikura K, Furukawa T, Lewis JS, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2003) Intra-tumoral distribution of 64Cu-ATSM: a comparison study with FDG. Nucl Med Biol 30:529–534CrossRefGoogle Scholar
  20. Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, Asai T, Welch MJ, Adams SG, Saji H, Yonekura Y, Fujibayashi Y (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32:21–28CrossRefGoogle Scholar
  21. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872CrossRefGoogle Scholar
  22. Sato Y, Tsujikawa T, Oh M, Mori T, Kiyono Y, Fujieda S, Kimura H, Okazawa H (2014) Assessing tumor hypoxia in head and neck cancer by PET with 62Cu-diacetyl-bis(N 4-methylthiosemicarbazone). Clin Nucl Med 39:1027–1032CrossRefGoogle Scholar
  23. Tanaka T, Furukawa T, Fujieda S, Kasamatsu S, Yonekura Y, Fujibayashi Y (2006) Double-tracer autoradiography with Cu-ATSM/FDG and immunohistochemical interpretation in four different mouse implanted tumor models. Nucl Med Biol 33:743–750CrossRefGoogle Scholar
  24. Tateishi K, Tateishi U, Sato M, Yamanaka S, Kanno H, Murata H, Inoue T, Kawahara N (2013) Application of 62Cu-diacetyl-bis (N 4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1alpha expression in patients with glioma. AJNR Am J Neuroradiol 34:92–99CrossRefGoogle Scholar
  25. Yoshii Y, Furukawa T, Kiyono Y, Watanabe R, Waki A, Mori T, Yoshii H, Oh M, Asai T, Okazawa H, Welch MJ, Fujibayashi Y (2010) Copper-64-diacetyl-bis (N 4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37:395–404CrossRefGoogle Scholar
  26. Yoshii Y, Furukawa T, Kiyono Y, Watanabe R, Mori T, Yoshii H, Asai T, Okazawa H, Welch MJ, Fujibayashi Y (2011) Internal radiotherapy with copper-64-diacetyl-bis (N 4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol 38:151–157CrossRefGoogle Scholar
  27. Yoshii Y, Yoneda M, Ikawa M, Furukawa T, Kiyono Y, Mori T, Yoshii H, Oyama N, Okazawa H, Saga T, Fujibayashi Y (2012) Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less rho0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol 39:177–185CrossRefGoogle Scholar
  28. Yoshii Y, Matsumoto H, Yoshimoto M, Furukawa T, Morokoshi Y, Sogawa C, Zhang MR, Wakizaka H, Yoshii H, Fujibayashi Y, Saga T (2014) Controlled administration of penicillamine reduces radiation exposure in critical organs during 64Cu-ATSM internal radiotherapy: a novel strategy for liver protection. PLoS One 9:e86996CrossRefGoogle Scholar
  29. Yoshii Y, Furukawa T, Matsumoto H, Yoshimoto M, Kiyono Y, Zhang MR, Fujibayashi Y, Saga T (2016) Cu-ATSM therapy targets regions with activated DNA repair and enrichment of CD133 cells in an HT-29 tumor model: sensitization with a nucleic acid antimetabolite. Cancer Lett 376:74–82CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Yasuhisa Fujibayashi
    • 1
    Email author
  • Yukie Yoshii
    • 1
  • Takako Furukawa
    • 2
  • Mitsuyoshi Yoshimoto
    • 3
  • Hiroki Matsumoto
    • 4
  • Tsuneo Saga
    • 5
  1. 1.National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
  2. 2.Department of Radiological and Medical Laboratory SciencesNagoya University Graduate School of MedicineNagoyaJapan
  3. 3.Division of Functional ImagingNational Cancer Center Hospital EastKashiwaJapan
  4. 4.Research CentreNihon Medi-Physics Co., Ltd.SodegauraJapan
  5. 5.Department of Diagnostic RadiologyKyoto University HospitalKyotoJapan

Personalised recommendations