Advertisement

Lactic Acid Bacteria and Host Immunity

  • Linlin Wang
  • Zhao He
  • Peijun Tian
  • Gang WangEmail author
Chapter

Abstract

The immune system is the most effective barrier for the host to defend against the invasion of external pathogens. The system consists of a series of immune organs, immune cells, and immune active substances (immune molecules), which can detect and eliminate non-autologous substances, such as foreign pathogens and foreign bodies, and its own mutant cells. Among them, immune organs include bone marrow, spleen, lymph nodes, tonsils, small intestine collecting lymph nodes, appendix, thymus, etc.; immune cells include lymphocytes, mononuclear phagocytic cells, neutrophils, basophils, eosinophils, hypertrophy cells, platelets, etc.; immune molecules include the complement, immunoglobulin, interferon, interleukin, tumor necrosis factor, etc. Different types of immune tissues, immune cells, and immune molecules have different roles, and they coordinate the functions of various parts through lymphocyte recycling and various immune molecules.

References

  1. Amar Y, Rizzello V, Cavaliere R et al (2015) Divergent signaling pathways regulate IL-12 production induced by different species of lactobacilli in human dendritic cells. Immunol Lett 166(1):6–12PubMedCrossRefPubMedCentralGoogle Scholar
  2. Amati L, Marzulli G, Martulli M et al (2010) Administration of a synbiotic to free-living elderly and evaluation of serum cytokines. A pilot study. Curr Pharm Des 16(7):854–858PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arunachalam K, Gill HS, Chandra RK (2000) Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis HN019. Eur J Clin Nutr 54(3):263–267PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bakker-Zierikzee AM, Tol EA, Kroes H et al (2006) Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17(2):134–140PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369(9573):1627–1640PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bleau C, Monges A, Rashidan K et al (2010) Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J Appl Microbiol 108(2):666–675PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boge T, Remigy M, Vaudaine S et al (2009) A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 27(41):5677–5684PubMedCrossRefPubMedCentralGoogle Scholar
  8. Braat H, van den Brande J, van Tol E et al (2004) Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr 80(6):1618–1625PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bron PA, van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10(1):66–78CrossRefGoogle Scholar
  10. Cangemi de Gutierrez RC, Santos de Araoz VS, Nader-Macias ME (2000) Effect of intranasal administration of Lactobacillus fermentum on the respiratory tract of mice. Biol Pharm Bull 23(8):973–978PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castillo NA, Moreno de LeBlanc AD, Galdeano CM et al (2013) Comparative study of the protective capacity against Salmonella infection between probiotic and nonprobiotic Lactobacilli. J Appl Microbiol 114(3):861–876PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chiang BL, Sheih YH, Wang LH et al (2000) Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr 54(11):849–855PubMedCrossRefPubMedCentralGoogle Scholar
  13. Christensen HR, Larsen CN, Kaestel P et al (2006) Immunomodulating potential of supplementation with probiotics: a dose-response study in healthy young adults. FEMS Immunol Med Microbiol 47(3):380–390PubMedCrossRefPubMedCentralGoogle Scholar
  14. Claes IJ, Lebeer S, Shen C et al (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162(2):306–314PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cross ML, Mortensen RR, Kudsk J et al (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Med Microbiol Immunol 191(1):49–53PubMedCrossRefPubMedCentralGoogle Scholar
  16. Daniel C, Repa A, Wild C et al (2006) Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy 61(7):812–819PubMedCrossRefPubMedCentralGoogle Scholar
  17. de Vrese M, Rautenberg P, Laue C et al (2005a) Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr 44(7):406–413PubMedCrossRefPubMedCentralGoogle Scholar
  18. de Vrese M, Winkler P, Rautenberg P et al (2005b) Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin Nutr 24(4):481–491PubMedCrossRefPubMedCentralGoogle Scholar
  19. Deepika G, Charalampopoulos D (2010) Surface and adhesion properties of lactobacilli. Adv Appl Microbiol 70:127–152PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dong H, Rowland I, Tuohy KM et al (2010) Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clin Exp Immunol 161(2):378–388PubMedPubMedCentralGoogle Scholar
  21. Dong H, Rowland I, Thomas LV et al (2013) Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. Eur J Nutr 52(8):1853–1863PubMedCrossRefGoogle Scholar
  22. Donnet-Hughes A, Rochat F, Serrant P et al (1999) Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J Dairy Sci 82(5):863–869PubMedCrossRefGoogle Scholar
  23. Elli M, Zink R, Rytz A et al (2000) Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol 88(4):695–703PubMedCrossRefGoogle Scholar
  24. Evrard B, Coudeyras S, Dosgilbert A et al (2011) Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 6(4):e18735PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fang H, Elina T, Heikki A et al (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol 29(1):47–52PubMedCrossRefGoogle Scholar
  26. Foligne B, Zoumpopoulou G, Dewulf J et al (2007) A key role of dendritic cells in probiotic functionality. PLoS ONE 2(3):e313PubMedPubMedCentralCrossRefGoogle Scholar
  27. Forchielli ML, Walker WA (2005) The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 93(Suppl 1):S41–S48PubMedCrossRefGoogle Scholar
  28. Fukushima Y, Kawata Y, Hara H et al (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42(1–2):39–44PubMedCrossRefGoogle Scholar
  29. Fukushima Y, Miyaguchi S, Yamano T et al (2007) Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1(NCC533). Br J Nutr 98(5):969–977PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gad M, Ravn P, Soborg DA et al (2011) Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol Med Microbiol 63(1):93–107PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gill HS, Rutherfurd KJ (2001a) Immune enhancement conferred by oral delivery of Lactobacillus rhamnosus HN001 in different milk-based substrates. J Dairy Res 68(4):611–616PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gill HS, Rutherfurd KJ (2001b) Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. Br J Nutr 86(2):285–289PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gill HS, Darragh AJ, Cross ML (2001a) Optimizing immunity and gut function in the elderly. J Nutr Health Aging 5(2):80–91PubMedPubMedCentralGoogle Scholar
  34. Gill HS, Rutherfurd KJ, Cross ML et al (2001b) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74(6):833–839PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gill HS, Rutherfurd KJ, Cross ML (2001c) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21(4):264–271PubMedCrossRefPubMedCentralGoogle Scholar
  36. Grangette C, Nutten S, Palumbo E et al (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA 102(29):10321–10326PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guencheva G, Popova P, Davidkova G et al (1992) Determination of cytokine release after in vivo and in vitro administration of Deodan (a preparation from Lactobacillus bulgaricus “LB51”) by the rabbit pyrogen test. Int J Immunopharmacol 14(8):1429–1436PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haller D, Blum S, Bode C et al (2000) Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68(2):752–759PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haller D, Serrant P, Granato D et al (2002) Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin Diagn Lab Immunol 9(3):649–657PubMedPubMedCentralGoogle Scholar
  40. Hart AL, Lammers K, Brigidi P et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609PubMedPubMedCentralCrossRefGoogle Scholar
  41. Heuvelin E, Lebreton C, Grangette C et al (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4(4):e5184PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hoarau C, Lagaraine C, Martin L et al (2006) Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol 117(3):696–702PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hur HJ, Lee KW, Lee HJ (2004) Production of nitric oxide, tumor necrosis factor-α and interleukin-6 by RAW264.7 macrophage cells treated with lactic acid bacteria isolated from kimchi. Biofactors 21(1–4):123–125PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ibrahim F, Ruvio S, Granlund L et al (2010) Probiotics and immunosenescence: cheese as a carrier. FEMS Immunol Med Microbiol 59(1):53–59PubMedCrossRefPubMedCentralGoogle Scholar
  45. Isolauri E, Joensuu J, Suomalainen H et al (1995) Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13(3):310–312PubMedCrossRefPubMedCentralGoogle Scholar
  46. Iyer C, Kosters A, Sethi G et al (2008) Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-κB and MAPK signalling. Cell Microbiol 10(7):1442–1452PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jeon SG, Kayama H, Ueda Y et al (2012) Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog 8(5):e1002714PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jijon H, Backer J, Diaz H et al (2004) DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126(5):1358–1373PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kaila M, Isolauri E, Saxelin M et al (1995) Viable versus inactivated Lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 72(1):51–53PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kaji R, Kiyoshima-Shibata J, Nagaoka M et al (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kano H, Kaneko T, Kaminogawa S (2002) Oral intake of Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 prevents collagen-induced arthritis in mice. J Food Prot 65(1):153–160PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kaushal D, Kansal VK (2014) Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum improves phagocytic potential of macrophages in aged mice. J Food Sci Technol 51(6):1147–1153PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kim HS, Park H, Cho IY et al (2006) Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J Med Food 9(3):321–327PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kirjavainen PV, El-Nezami HS, Salminen SJ et al (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol Med Microbiol 26(2):131–135PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kitazawa H, Harata T, Uemura J et al (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40(3):169–175PubMedCrossRefPubMedCentralGoogle Scholar
  56. Klein A, Friedrich U, Vogelsang H et al (2008) Lactobacillus acidophilus 74–2 and Bifidobacterium animalis subsp. lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr 62(5):584–593PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ko JS, Yang HR, Chang JY et al (2007) Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α. World J Gastroenterol 13(13):1962–1965PubMedPubMedCentralCrossRefGoogle Scholar
  58. Konstantinov SR, Smidt H, de Vos WM et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105(49):19474–19479PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kotani Y, Shinkai S, Okamatsu H et al (2010) Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: a randomized, placebo-controlled, double-blind trial. Immun Ageing 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kukkonen K, Nieminen T, Poussa T et al (2006) Effect of probiotics on vaccine antibody responses in infancy--a randomized placebo-controlled double-blind trial. Pediatr Allergy Immunol 17(6):416–421PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lara-Villoslada F, Sierra S, Boza J et al (2007) Beneficial effects of consumption of a dairy product containing two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 in healthy children. Nutr Hosp 22(4):496–502PubMedPubMedCentralGoogle Scholar
  62. Latvala S, Pietila TE, Veckman V et al (2008) Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells. World J Gastroenterol 14(36):5570–5583. discussion 5581–5572PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lebeer S, Claes IJ, Verhoeven TL et al (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4(3):368–374PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lebeer S, Claes I, Tytgat HL et al (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lee JW, Shin JG, Kim EH et al (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5(1):41–48PubMedCrossRefPubMedCentralGoogle Scholar
  66. Link-Amster H, Rochat F, Saudan KY et al (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10(1):55–63PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu Y, Fatheree NY, Mangalat N et al (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299(5):G1087–G1096PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu H, Zhang J, Zhang S et al (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62(4):860–866PubMedCrossRefPubMedCentralGoogle Scholar
  69. Luongo D, Miyamoto J, Bergamo P et al (2013) Differential modulation of innate immunity in vitro by probiotic strains of Lactobacillus gasseri. BMC Microbiol 13:298PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maassen CB, van Holten-Neelen C, Balk F et al (2000) Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18(23):2613–2623PubMedCrossRefPubMedCentralGoogle Scholar
  71. Maassen CB, Boersma WJ, van Holten-Neelen C et al (2003) Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21(21–22):2751–2757PubMedCrossRefPubMedCentralGoogle Scholar
  72. Macho FE, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059CrossRefGoogle Scholar
  73. Mack DR, Ahrne S, Hyde L et al (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833PubMedPubMedCentralCrossRefGoogle Scholar
  74. Malin M, Suomalainen H, Saxelin M et al (1996) Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab 40(3):137–145PubMedCrossRefPubMedCentralGoogle Scholar
  75. Maneerat S, Lehtinen MJ, Childs CE et al (2013) Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes. J Nutr Sci 2:e44PubMedCrossRefPubMedCentralGoogle Scholar
  76. Marcos A, Warnberg J, Nova E et al (2004) The effect of milk fermented by yogurt cultures plus Lactobacillus casei DN-114001 on the immune response of subjects under academic examination stress. Eur J Nutr 43(6):381–389PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mariman R, Tielen F, Koning F et al (2014) The probiotic mixture VSL#3 dampens LPS-induced chemokine expression in human dendritic cells by inhibition of STAT-1 phosphorylation. PLoS ONE 9(12):e115676PubMedPubMedCentralCrossRefGoogle Scholar
  78. Marin ML, Tejada-Simon MV, Lee JH et al (1998) Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus: comparison with Bifidobacterium sp. and Lactobacillus bulgaricus. J Food Prot 61(7):859–864PubMedCrossRefPubMedCentralGoogle Scholar
  79. Marschan E, Kuitunen M, Kukkonen K et al (2008) Probiotics in infancy induce protective immune profiles that are characteristic for chronic low-grade inflammation. Clin Exp Allergy 38(4):611–618PubMedCrossRefPubMedCentralGoogle Scholar
  80. Marteau P, Vaerman JP, Dehennin JP et al (1997) Effects of intrajejunal perfusion and chronic ingestion of Lactobacillus johnsonii strain La1 on serum concentrations and jejunal secretions of immunoglobulins and serum proteins in healthy humans. Gastroenterol Clin Biol 21(4):293–298PubMedPubMedCentralGoogle Scholar
  81. Martinez-Canavate A, Sierra S, Lara-Villoslada F et al (2009) A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy. Pediatr Allergy Immunol 20(6):592–600PubMedCrossRefPubMedCentralGoogle Scholar
  82. Mastrandrea F, Coradduzza G, Serio G et al (2004) Probiotics reduce the CD34+ hemopoietic precursor cell increased traffic in allergic subjects. Eur Ann Allergy Clin Immunol 36(4):118–122PubMedPubMedCentralGoogle Scholar
  83. Matsuguchi T, Takagi A, Matsuzaki T et al (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor α-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol 10(2):259–266PubMedPubMedCentralGoogle Scholar
  84. Matsumoto S, Hara T, Hori T et al (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140(3):417–426PubMedPubMedCentralCrossRefGoogle Scholar
  85. Medina M, Izquierdo E, Ennahar S et al (2007) Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 150(3):531–538PubMedPubMedCentralCrossRefGoogle Scholar
  86. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826PubMedPubMedCentralCrossRefGoogle Scholar
  87. Menard O, Butel MJ, Gaboriau-Routhiau V et al (2008) Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol 74(3):660–666PubMedCrossRefGoogle Scholar
  88. Meyer AL, Micksche M, Herbacek I et al (2006) Daily intake of probiotic as well as conventional yogurt has a stimulating effect on cellular immunity in young healthy women. Ann Nutr Metab 50(3):282–289PubMedCrossRefGoogle Scholar
  89. Miettinen M, Veckman V, Latvala S et al (2008) Live Lactobacillus rhamnosus and Streptococcus pyogenes differentially regulate Toll-like receptor (TLR) gene expression in human primary macrophages. J Leukoc Biol 84(4):1092–1100PubMedCrossRefGoogle Scholar
  90. Mullie C, Yazourh A, Thibault H et al (2004) Increased poliovirus-specific intestinal antibody response coincides with promotion of Bifidobacterium longum-infantis and Bifidobacterium breve in infants: a randomized, double-blind, placebo-controlled trial. Pediatr Res 56(5):791–795PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nagao F, Nakayama M, Muto T et al (2000a) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci Biotechnol Biochem 64(12):2706–2708PubMedCrossRefPubMedCentralGoogle Scholar
  92. Nagao M, Nakajima Y, Kanehiro H et al (2000b) The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology 32(3):491–500PubMedCrossRefPubMedCentralGoogle Scholar
  93. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39(1):13–126PubMedCrossRefPubMedCentralGoogle Scholar
  94. Niers LE, Timmerman HM, Rijkers GT et al (2005) Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 35(11):1481–1489PubMedCrossRefGoogle Scholar
  95. O’Mahony L, O’Callaghan L, McCarthy J et al (2006) Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans. Am J Physiol Gastrointest Liver Physiol 290(4):G839–G845PubMedCrossRefPubMedCentralGoogle Scholar
  96. O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog 4(8):e1000112PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ogawa T, Asai Y, Tamai R et al (2006) Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran. Clin Exp Immunol 143(1):103–109PubMedPubMedCentralCrossRefGoogle Scholar
  98. Oliva S, di Nardo G, Ferrari F et al (2012) Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 35(3):327–334PubMedCrossRefGoogle Scholar
  99. Olivares M, Diaz-Ropero MP, Gomez N et al (2006a) The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. Int Microbiol 9(1):47–52PubMedGoogle Scholar
  100. Olivares M, Paz DM, Gomez N et al (2006b) Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. J Dairy Res 73(4):492–498PubMedCrossRefGoogle Scholar
  101. Olivares M, Diaz-Ropero MP, Sierra S et al (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23(3):254–260PubMedCrossRefGoogle Scholar
  102. Ortiz-Andrellucchi A, Sanchez-Villegas A, Rodriguez-Gallego C et al (2008) Immunomodulatory effects of the intake of fermented milk with Lactobacillus casei DN114001 in lactating mothers and their children. Br J Nutr 100(4):834–845PubMedCrossRefGoogle Scholar
  103. Ouwehand AC, Bergsma N, Parhiala R et al (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 53(1):18–25PubMedCrossRefGoogle Scholar
  104. Ouwehand AC, Tiihonen K, Saarinen M et al (2009) Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr 101(3):367–375PubMedCrossRefGoogle Scholar
  105. Paineau D, Carcano D, Leyer G et al (2008) Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 53(1):107–113PubMedCrossRefGoogle Scholar
  106. Parra D, de Morentin BM, Cobo JM et al (2004) Monocyte function in healthy middle-aged people receiving fermented milk containing Lactobacillus casei. J Nutr Health Aging 8(4):208–211PubMedGoogle Scholar
  107. Pelto L, Isolauri E, Lilius EM et al (1998) Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 28(12):1474–1479PubMedCrossRefPubMedCentralGoogle Scholar
  108. Pena JA, Versalovic J (2003) Lactobacillus rhamnosus GG decreases TNF-α production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol 5(4):277–285PubMedCrossRefPubMedCentralGoogle Scholar
  109. Perdigon G, Alvarez S, Rachid M et al (1995) Immune system stimulation by probiotics. J Dairy Sci 78(7):1597–1606PubMedCrossRefPubMedCentralGoogle Scholar
  110. Perdigon G, Maldonado GC, Valdez JC et al (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56(Suppl 4):S21–S26PubMedCrossRefPubMedCentralGoogle Scholar
  111. Perez N, Iannicelli JC, Girard-Bosch C et al (2010) Effect of probiotic supplementation on immunoglobulins, isoagglutinins and antibody response in children of low socio-economic status. Eur J Nutr 49(3):173–179PubMedCrossRefPubMedCentralGoogle Scholar
  112. Phuapradit P, Varavithya W, Vathanophas K et al (1999) Reduction of rotavirus infection in children receiving bifidobacteria-supplemented formula. J Med Assoc Thai 82(Suppl 1):S43–S48PubMedPubMedCentralGoogle Scholar
  113. Piirainen L, Haahtela S, Helin T et al (2008) Effect of Lactobacillus rhamnosus GG on rBet v1 and rMal d1 specific IgA in the saliva of patients with birch pollen allergy. Ann Allergy Asthma Immunol 100(4):338–342PubMedCrossRefPubMedCentralGoogle Scholar
  114. Popova P, Guencheva G, Davidkova G et al (1993) Stimulating effect of DEODAN (an oral preparation from Lactobacillus bulgaricus “LB51”) on monocytes/macrophages and host resistance to experimental infections. Int J Immunopharmacol 15(1):25–37PubMedCrossRefPubMedCentralGoogle Scholar
  115. Prescott SL, Wickens K, Westcott L et al (2008) Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-β and immunoglobulin A detection. Clin Exp Allergy 38(10):1606–1614PubMedCrossRefPubMedCentralGoogle Scholar
  116. Prokop’Ev AA, Kalinina NM, Andreev SV et al (1987) Peptidoglycan isolated from Lactobacillus bulgaricus: its effect, mediated by the complement system, on pre-T-cell maturation. Biull Eksp Biol Med 104(10):492–494PubMedPubMedCentralGoogle Scholar
  117. Remus DM, Bongers RS, Meijerink M et al (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195(3):502–509PubMedPubMedCentralCrossRefGoogle Scholar
  118. Roessler A, Friedrich U, Vogelsang H et al (2008) The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy 38(1):93–102PubMedPubMedCentralGoogle Scholar
  119. Roselli M, Finamore A, Britti MS et al (2007) The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 137(12):2709PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rosenfeldt V, Benfeldt E, Nielsen SD et al (2003) Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol 111(2):389–395PubMedCrossRefPubMedCentralGoogle Scholar
  121. Ruiz PA, Hoffmann M, Szcesny S et al (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115(4):441–450PubMedPubMedCentralCrossRefGoogle Scholar
  122. Saliganti V, Kapila R, Sharma R et al (2015) Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring. Br J Nutr 114(8):1168–1179PubMedCrossRefPubMedCentralGoogle Scholar
  123. Schiffrin EJ, Rochat F, Link-Amster H et al (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78(3):491–497PubMedCrossRefPubMedCentralGoogle Scholar
  124. Schiffrin EJ, Brassart D, Servin AL et al (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66(2):515S–520SPubMedCrossRefPubMedCentralGoogle Scholar
  125. Schlee M, Harder J, Koten B et al (2008) Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin Exp Immunol 151(3):528–535PubMedPubMedCentralCrossRefGoogle Scholar
  126. Schultz M, Linde HJ, Lehn N et al (2003) Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res 70(2):165–173PubMedCrossRefPubMedCentralGoogle Scholar
  127. Seth A, Yan F, Polk DB et al (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–G1069PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sheih YH, Chiang BL, Wang LH et al (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J Am Coll Nutr 20(2 Suppl):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  129. Sherman PM, Johnson-Henry KC, Yeung HP et al (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157: H7- and enteropathogenic E. coli O127: H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73(8):5183–5188PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shida K, Takahashi R, Iwadate E et al (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32(4):563–570PubMedCrossRefPubMedCentralGoogle Scholar
  131. Shida K, Kiyoshima-Shibata J, Nagaoka M et al (2006) Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 89(9):3306–3317PubMedCrossRefPubMedCentralGoogle Scholar
  132. Shimizu K, Sato H, Suga Y et al (2014) The effects of Lactobacillus pentosus strain b240 and appropriate physical training on salivary secretory IgA levels in elderly adults with low physical fitness: a randomized, double-blind, placebo-controlled trial. J Clin Biochem Nutr 54(1):61–66PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sierra S, Lara-Villoslada F, Sempere L et al (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16(3):195–200PubMedCrossRefPubMedCentralGoogle Scholar
  134. Smits HH, Engering A, van der Kleij D et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267PubMedCrossRefPubMedCentralGoogle Scholar
  135. Soh SE, Ong DQ, Gerez I et al (2010) Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant hepatitis B vaccination. Vaccine 28(14):2577–2579PubMedCrossRefPubMedCentralGoogle Scholar
  136. Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52(12):899–907PubMedCrossRefPubMedCentralGoogle Scholar
  137. Takeda K, Okumura K (2007) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity. J Nutr 137(3 Suppl 2):791S–793SPubMedCrossRefPubMedCentralGoogle Scholar
  138. Taylor AL, Hale J, Wiltschut J et al (2006a) Effects of probiotic supplementation for the first 6 months of life on allergen- and vaccine-specific immune responses. Clin Exp Allergy 36(10):1227–1235PubMedCrossRefPubMedCentralGoogle Scholar
  139. Taylor A, Hale J, Wiltschut J et al (2006b) Evaluation of the effects of probiotic supplementation from the neonatal period on innate immune development in infancy. Clin Exp Allergy 36(10):1218–1226PubMedCrossRefPubMedCentralGoogle Scholar
  140. Tien MT, Girardin SE, Regnault B et al (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176(2):1228–1237PubMedCrossRefPubMedCentralGoogle Scholar
  141. Travassos LH, Girardin SE, Philpott DJ et al (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5(10):1000–1006PubMedPubMedCentralCrossRefGoogle Scholar
  142. Veckman V, Miettinen M, Matikainen S et al (2003) Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol 74(3):395–402PubMedCrossRefPubMedCentralGoogle Scholar
  143. Veckman V, Miettinen M, Pirhonen J et al (2004) Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol 75(5):764–771PubMedCrossRefPubMedCentralGoogle Scholar
  144. Verbeek R, Bsibsi M, Plomp A et al (2010) Late rather than early responses of human dendritic cells highlight selective induction of cytokines, chemokines and growth factors by probiotic bacteria. Benef Microbes 1(2):109–119PubMedCrossRefPubMedCentralGoogle Scholar
  145. Villena J, Chiba E, Vizoso-Pinto MG et al (2014) Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells. BMC Microbiol 14:126PubMedPubMedCentralCrossRefGoogle Scholar
  146. Vinderola G, Matar C, Perdigon G (2005) Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors. Clin Diagn Lab Immunol 12(9):1075–1084PubMedPubMedCentralGoogle Scholar
  147. Vinderola G, Perdigon G, Duarte J et al (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36(5–6):254–260PubMedCrossRefPubMedCentralGoogle Scholar
  148. Vissers YM, Snel J, Zuurendonk PF et al (2011) Lactobacillus strains differentially modulate cytokine production by hPBMC from pollen-allergic patients. FEMS Immunol Med Microbiol 61(1):28–40PubMedCrossRefPubMedCentralGoogle Scholar
  149. Vlasova AN, Chattha KS, Kandasamy S et al (2013) Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS ONE 8(10):e76962PubMedPubMedCentralCrossRefGoogle Scholar
  150. Volz T, Nega M, Buschmann J et al (2010) Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent costimulators of the innate immune system exclusively in the presence of TLR signals. FASEB J 24(10):4089–4102PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wang X, Yang F, Liu C et al (2012) Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. Journal of Nutrition 142(1):7–13PubMedCrossRefPubMedCentralGoogle Scholar
  152. West CE, Gothefors L, Granstrom M et al (2008) Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol 19(1):53–60PubMedCrossRefPubMedCentralGoogle Scholar
  153. Winkler P, de Vrese M, Laue C et al (2005) Effect of a dietary supplement containing probiotic bacteria plus vitamins and minerals on common cold infections and cellular immune parameters. Int J Clin Pharmacol Ther 43(7):318–326PubMedCrossRefPubMedCentralGoogle Scholar
  154. Yamaguchi DT, Ma D (2003) Mechanism of pH regulation of connexin 43 expression in MC3T3-E1 cells. Biochem Biophys Res Commun 304(4):736–739PubMedCrossRefPubMedCentralGoogle Scholar
  155. Yan F, Cao H, Cover TL et al (2011) Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest 121(6):2242–2253PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yasuda E, Serata M, Sako T (2008) Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol 74(15):4746–4755PubMedPubMedCentralCrossRefGoogle Scholar
  157. Young SL, Simon MA, Baird MA et al (2004) Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin Diagn Lab Immunol 11(4):686–690PubMedPubMedCentralGoogle Scholar
  158. Yu HF, Wang AN, Li XJ et al (2008) Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci 17(1):61–69CrossRefGoogle Scholar
  159. Zeuthen LH, Fink LN, Frokiaer H (2008) Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4):489–502PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina

Personalised recommendations