Computational Hermeneutics: An Integrated Approach for the Logical Analysis of Natural-Language Arguments

  • David FuenmayorEmail author
  • Christoph Benzmüller
Conference paper
Part of the Logic in Asia: Studia Logica Library book series (LIAA)


We utilize higher order automated deduction technologies for the logical analysis of natural-language arguments. Our approach, termed computational hermeneutics, is grounded on recent progress in the area of automated theorem proving for classical and nonclassical higher order logics, and it integrates techniques from argumentation theory. It has been inspired by ideas in the philosophy of language, especially semantic holism and Donald Davidson’s radical interpretation; a systematic approach to interpretation that does justice to the inherent circularity of understanding: the whole is understood compositionally on the basis of its parts, while each part is understood only in the context of the whole (hermeneutic circle). Computational hermeneutics is a holistic, iterative approach where we evaluate the adequacy of some candidate formalization of a sentence by computing the logical validity of (i) the whole argument it appears in and (ii) the dialectic role the argument plays in some piece of discourse.


Computational hermeneutics Rational argumentation Universal logical reasoning Higher order logic Semantical embeddings Proof assistants 



We thank the anonymous reviewers for their valuable comments which helped to improve this paper.


  1. Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, summer, 2018th edn. Stanford University, Metaphysics Research Lab (2018)Google Scholar
  2. Arieli, O., Straßer, C.: Sequent-based logical argumentation. Argum. Comput. 6(1), 73–99 (2015)CrossRefGoogle Scholar
  3. Baumberger, C., Brun, G.: Dimensions of objectual understanding. In: Explaining Understanding. New Perspectives from Epistemology and Philosophy of Science, pp. 165–189 (2016)Google Scholar
  4. Baumgartner, M., Lampert, T.: Adequate formalization. Synthese 164(1), 93–115 (2008)CrossRefGoogle Scholar
  5. Bentert, M., Benzmüller, C., Streit, D., Woltzenlogel Paleo, B.: Analysis of an ontological proof proposed by Leibniz. In: Tandy, C. (ed.) Death and Anti-Death, Volume 14: Four Decades after Michael Polanyi, Three Centuries after G.W. Leibniz. Ria University Press (2016).
  6. Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput. Program. 172, 48–62 (2019).,
  7. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Logic 69(4), 1027–1088 (2004)., Scholar
  8. Benzmüller, C., Fuenmayor, D.: Can computers help to sharpen our understanding of ontological arguments? In: Gosh, S., Uppalari, R., Rao, K.V., Agarwal, V., Sharma, S. (eds.) Mathematics and Reality, Proceedings of the 11th All India Students’ Conference on Science & Spiritual Quest, 6–7 October 2018, IIT Bhubaneswar, Bhubaneswar, India. The Bhaktivedanta Institute, Kolkata. (2018).,
  9. Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Logic J. IGPL 18(6), 881–892 (2010)., Scholar
  10. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Universalis (Special Issue on Multimodal Logics) 7(1), 7–20 (2013)., Scholar
  11. Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)., Scholar
  12. Benzmüller, C., Weber, L., Woltzenlogel-Paleo, B.: Computer-assisted analysis of the Anderson-Hájek controversy. Logica Universalis 11(1), 139–151 (2017)., Scholar
  13. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications, ECAI 2014, vol. 263, pp. 93–98. IOS Press (2014).,
  14. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016 (2016a).
  15. Benzmüller, C., Woltzenlogel Paleo, B.: An object-logic explanation for the inconsistency in Gödel’s ontological theory (extended abstract). In: Helmert, M., Wotawa, F. (eds.) Proceedings of Advances in Artificial Intelligence, KI 2016. LNCS, vol. 9725, pp. 43–50. Springer, Heidelberg (2016b).
  16. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)CrossRefGoogle Scholar
  17. Besnard, P., Hunter, A.: Argumentation based on classical logic. In: Argumentation in Artificial Intelligence, pp. 133–152. Springer, Boston (2009)CrossRefGoogle Scholar
  18. Blanchette, J., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Proceedings of ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. Brun, G.: Die richtige Formel: Philosophische Probleme der logischen Formalisierung, vol. 2. Walter de Gruyter (2003)Google Scholar
  20. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 378–389. Springer, Heidelberg (2005)Google Scholar
  21. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar abstract argumentation systems. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 65–84. Springer, Boston (2009)CrossRefGoogle Scholar
  22. Davidson, D.: Radical interpretation interpreted. Philos. Perspect. 8, 121–128 (1994)CrossRefGoogle Scholar
  23. Davidson, D.: Essays on Actions and Events: Philosophical Essays, vol. 1. Oxford University Press on Demand, Oxford (2001)Google Scholar
  24. Davidson, D.: Inquiries into Truth and Interpretation: Philosophical Essays, vol. 2. Oxford University Press, Oxford (2001)Google Scholar
  25. Davidson, D.: Radical interpretation. In: Inquiries into Truth and Interpretation. Oxford University Press, Oxford (2001)CrossRefGoogle Scholar
  26. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. intell. 77(2), 321–357 (1995)CrossRefGoogle Scholar
  27. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009)CrossRefGoogle Scholar
  28. van Eemeran, F.H., Grootendorst, R.: A Systematic Theory of Argumentation. Cambridge University Press, Cambridge (2004)Google Scholar
  29. Elgin, C.: Considered Judgment. Princeton University Press, New Jersey (1999)Google Scholar
  30. Fitelson, B., Zalta, E.N.: Steps toward a computational metaphysics. J. Philos. Logic 36(2), 227–247 (2007)CrossRefGoogle Scholar
  31. Fuenmayor, D., Benzmüller, C.: Automating emendations of the ontological argument in intensional higher-order modal logic. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) Advances in Artificial Intelligence, KI 2017, vol. 10505, pp. 114–127. Springer, Cham (2017a)CrossRefGoogle Scholar
  32. Fuenmayor, D., Benzmüller, C.: Computer-assisted reconstruction and assessment of E. J. Lowe’s modal ontological argument. Archive of Formal Proofs (2017b)., Formal proof development
  33. Fuenmayor, D., Benzmüller, C.: A case study on computational hermeneutics: E. J. Lowe’s modal ontological argument. IfCoLoG J. Logics Appl. (Special issue on Formal Approaches to the Ontological Argument) (2018).
  34. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21 EPiC Series in Computing, vol. 46, pp. 14–30. EasyChair, Maun, Botswana (2017).,
  35. Gödel, K.: Appx. A: Notes in Kurt Gödel’s Hand, pp. 144–145. In: [50] (2004).
  36. Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press, Cambridge (1983)Google Scholar
  37. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1), 39–100 (1991)CrossRefGoogle Scholar
  38. Kamp, H., Van Genabith, J., Reyle, U.: Discourse representation theory. In: Handbook of Philosophical Logic, pp. 125–394. Springer, Dordrecht (2011)Google Scholar
  39. Lowe, E.J.: A modal version of the ontological argument. In: Moreland, J.P., Sweis, K.A., Meister, C.V. (eds.) Debating Christian Theism, Chap. 4, pp. 61–71. Oxford University Press (2013)Google Scholar
  40. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Ed. and with an Introd. by Richmond H. Thomason. Yale University Press (1974)Google Scholar
  41. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. No. 2283 in LNCS. Springer, Heidelberg (2002)Google Scholar
  42. Oppy, G.: Gödelian ontological arguments. Analysis 56(4), 226–230 (1996)CrossRefGoogle Scholar
  43. Oppy, G.: Ontological Arguments and Belief in God. Cambridge University Press, Cambridge (2007)Google Scholar
  44. Peregrin, J., Svoboda, V.: Criteria for logical formalization. Synthese 190(14), 2897–2924 (2013)CrossRefGoogle Scholar
  45. Peregrin, J., Svoboda, V.: Reflective Equilibrium and the Principles of Logical Analysis: Understanding the Laws of Logic. Routledge Studies in Contemporary Philosophy. Taylor and Francis (2017)Google Scholar
  46. Quine, W.V.O.: Two dogmas of empiricism. In: Can Theories be Refuted?, pp. 41–64. Springer, Dordrecht (1976)Google Scholar
  47. Quine, W.V.O.: Word and Object. MIT Press, New York (2013)CrossRefGoogle Scholar
  48. Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (2009)Google Scholar
  49. Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop “Fun With Formal Methods”. St. Petersburg, Russia (2013)Google Scholar
  50. Scott, D.: Appx.B: Notes in Dana Scott’s Hand, pp. 145–146. In: [50] (2004).
  51. Sobel, J.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, New York (2004).
  52. Tarski, A.: The concept of truth in formalized languages. Logic Semant. Metamathematics 2, 152–278 (1956)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations