Advertisement

Inherited Bone Marrow Failure Syndromes

  • K. V. Karthika
  • Priyanka Mishra
  • Hara Prasad Pati
Chapter

Abstract

The inherited bone marrow failure syndromes are a heterogeneous group of disorders characterized by bone marrow failure which may or may not be associated with one or more somatic abnormality. The bone marrow failure can involve all or a single cell lineage resulting in pancytopenia or single cytopenias, respectively. Their true incidence is not clear since most of them are misdiagnosed as cases of acquired aplastic anemia. These syndromes often present in childhood but may not do so until adulthood in some cases. Inherited marrow failure syndromes need to be considered in the differential diagnosis of patients with characteristic physical abnormalities when present, along with idiopathic aplastic anemia, myelodysplastic syndrome, acute myeloid leukemia, or other characteristic solid cancers at an unusually early age. Diagnosis is confirmed by the identification of pathogenic mutations associated with each syndrome.

Keywords

Fanconi anemia Dyskeratosis congenita Diamond–Blackfan anemia Schwachman–Diamond syndrome Severe congenital neutropenia Congenital amegakaryocytic thrombocytopenia Thrombocytopenia absent radii 

References

  1. 1.
    Alter BP. Inherited bone marrow failure syndromes. In: Nathan DG, Orkin SH, Ginsburg D, Look AT, editors. Nathan and Oski’s hematology of infancy and childhood. Philadelphia: W.B. Saunders; 2003.Google Scholar
  2. 2.
    Verlander PC, Kaporis A, Liu Q, Zhang Q, Seligsohn U, Auerbach AD. Carrier frequency of the IVS4 + 4 AT mutation of the Fanconi anemia gene FANC in the Ashkenazi Jewish population. Blood. 1995;86:4034–8.PubMedGoogle Scholar
  3. 3.
    Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell. 2001;7:241–8.CrossRefGoogle Scholar
  4. 4.
    Lobitz S, Velleuer E. Guido Fanconi (1892-1979): a jack of all trades. Nat Rev Cancer. 2006;6(11):893–8.CrossRefGoogle Scholar
  5. 5.
    Faivre L, Guardiola P, Lewis C, et al. Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group. Blood. 2000;96:4064.PubMedGoogle Scholar
  6. 6.
    D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23.CrossRefGoogle Scholar
  7. 7.
    Litman R, Peng M, Jin Z, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005;8:255.CrossRefGoogle Scholar
  8. 8.
    Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162.CrossRefGoogle Scholar
  9. 9.
    De Rocco D, Bottega R, Cappelli E, et al. Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology. Haematologica. 2014;99:1022.CrossRefGoogle Scholar
  10. 10.
    Hira A, Yoshida K, Sato K, et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet. 2015;96:1001.CrossRefGoogle Scholar
  11. 11.
    Dong H, Nebert DW, Bruford EA, et al. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015;9:32.CrossRefGoogle Scholar
  12. 12.
    Rickman KA, Lach FP, Abhyankar A, et al. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep. 2015;12:35.CrossRefGoogle Scholar
  13. 13.
    Virts EL, Jankowska A, Mackay C, et al. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum Mol Genet. 2015;24:5093.CrossRefGoogle Scholar
  14. 14.
    Sawyer SL, Tian L, Kähkönen M, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5:135.CrossRefGoogle Scholar
  15. 15.
    Wang AT, Kim T, Wagner JE, et al. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell. 2015;59:478.CrossRefGoogle Scholar
  16. 16.
    Ameziane N, May P, Haitjema A, et al. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun. 2015;6:8829.CrossRefGoogle Scholar
  17. 17.
    Park JY, Virts EL, Jankowska A, et al. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet. 2016;53:672.CrossRefGoogle Scholar
  18. 18.
    Wang W. Emergence of a DNA-damage response network consisting of Fanconianaemia and BRCA proteins. Nat Rev Genet. 2007;8:735.CrossRefGoogle Scholar
  19. 19.
    Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet. 2004;36:1219.CrossRefGoogle Scholar
  20. 20.
    Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature. 2013 Jan 17;493(7432):356–63.CrossRefGoogle Scholar
  21. 21.
    Giampietro PF, Adler-Brecher B, Verlander PC, Pavlakis SG, Davis JG, Auerbach AD. The need for more accurate and timely diagnosis in Fanconi anemia. A report from the International Fanconi Anemia Registry. Paediatrics. 1993;91:1116–20.Google Scholar
  22. 22.
    Alter BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014;27:214.CrossRefGoogle Scholar
  23. 23.
    Alter BP. Cancer in Fanconi anemia, 1927-2001. Cancer. 2003;97:425.CrossRefGoogle Scholar
  24. 24.
    Oostra AB, Nieuwint AWM, Joenje H, de Winter JP. Diagnosis of Fanconi anemia: chromosomal breakage analysis. Anemia. 2012;2012:238731.CrossRefGoogle Scholar
  25. 25.
    Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13:696.CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Horiguchi N, Kakizaki S, Iizuka K, et al. Hepatic angiosarcoma with dyskeratosis congenita. Intern Med. 2015;54:2867.CrossRefGoogle Scholar
  28. 28.
    Woloszynek JR, Rothbaum RJ, Rawls AS, et al. Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome. Blood. 2004;104:3588.CrossRefGoogle Scholar
  29. 29.
    Dror Y, Donadieu J, Koglmeier J, et al. Draft consensus guidelines for diagnosis and treatment of syndrome. Ann N Y Acad Sci. 2011;1242:40.CrossRefGoogle Scholar
  30. 30.
    King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia (CAMT): a detailed clinical analysis of 21 cases reveal different types of CAMT. Blood/ASH Annual Meeting abstracts 2004; abstract 740; 2005. Dec, 2004. American Society of Hematology.Google Scholar
  31. 31.
    Rose MJ, Nicol KK, Skeens MA, Gross TG, Kerlin BA. Congenital amegakaryocytic thrombocytopenia: the diagnostic importance of combining pathology with molecular genetics. Pediatr Blood Cancer. 2008;50:1263–5.CrossRefGoogle Scholar
  32. 32.
    Gazda HT, Zhong R, Long L, Niewiadomska E, Lipton JM, Ploszynska A, et al. RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol. 2004;127:105–13.CrossRefGoogle Scholar
  33. 33.
    Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006;79:1110–8.CrossRefGoogle Scholar
  34. 34.
    Vlachos A, Ball S, Niklas D, Alter BP, Sheth S, Ugo R, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an International Clinical Consensus Conference; 2008. p. 1365–2141.Google Scholar
  35. 35.
    Lipton JM, Ellis SR. Diamond Blackfan anemia: diagnosis, treatment and molecular pathogenesis. Hematol Oncol Clin North Am. 2009;23(2):261–82.CrossRefGoogle Scholar
  36. 36.
    Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95.CrossRefGoogle Scholar
  37. 37.
    Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.PubMedGoogle Scholar
  38. 38.
    Ward AC. The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Front Biosci. 2007;12:608–18.CrossRefGoogle Scholar
  39. 39.
    Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.CrossRefGoogle Scholar
  40. 40.
    Alter BP, D’Andrea AD. Inherited bone marrow failure syndromes. In: Handin RI, Lux SE, Stossel TP, editors. Blood: principles and practice of hematology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 209–72.Google Scholar
  41. 41.
    Bonsi L, Marchionni C, Alviano F, Lanzoni G, Franchini M, Costa R. Thrombocytopenia with absent radii (TAR) syndrome: from hemopoietic progenitor to mesenchymal stromal cell disease? Exp Hematol. 2009;37:1–7.CrossRefGoogle Scholar
  42. 42.
    Letestu R, Vitrat N, Massé A. Existence of a differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood. 2000;95:1633–41.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. V. Karthika
    • 1
  • Priyanka Mishra
    • 1
  • Hara Prasad Pati
    • 1
  1. 1.Department of HematologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations