Advertisement

Historical Investigations and Advances in Flow Cytometry-Based Tests in Paroxysmal Nocturnal Hemoglobinuria

  • Khaliqur RahmanEmail author
  • Dinesh Chandra
Chapter

Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant, clonal hematopoietic stem cell disorder, which is characterized by features of hemolysis, thrombosis, and bone marrow (BM) failure. The genetic mechanism behind PNH is a somatic mutation in a gene known as phosphatidylinositol glycan class A (PIGA), present on chromosome “X.” PIGA gene is required for the synthesis of glycosylphosphatidylinositol (GPI), the anchor through which many proteins are attached to the cell membrane. These proteins are collectively known as GPI-anchored proteins (GPI-APs) [1, 2]. Among these GPI-APs are CD55 and CD59, the two important complement regulatory proteins. Absence of these leads to complement-mediated red blood cell lysis, one of the characteristic features of PNH [3, 4]. The term “PNH,” however, appears imprecise as only a fraction of patients presents with hemoglobinuria, which is also not always nocturnal.

Keywords

Flow cytometry PNH FLAER High sensitivity assay 

References

  1. 1.
    Nagarajan S, Brodsky RA, Young NS, Medof ME. Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood. 1995;86:4656–61.PubMedGoogle Scholar
  2. 2.
    Takahashi M, Takeda J, Hirose S, Hyman R, Inoue N, Miyata T, et al. Deficient biosynthesis of N-acetylglucosaminyl-phosphatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with paroxysmal nocturnal hemoglobinuria. J Exp Med. 1993;177:517–21.CrossRefGoogle Scholar
  3. 3.
    Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984;160:1558–78.CrossRefGoogle Scholar
  4. 4.
    Rollins SA, Sims PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990;144:3478–83.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mukhina GL, Buckley TJ, Barber JP, Jones RJ, Brodsky RA. Multilineage glycophosphatidylinositol anchor deficient haematopoeisis in untreated aplastic anemia. Br J Haematol. 2001;115:476–82.CrossRefGoogle Scholar
  6. 6.
    Sachdeva MUS, Varma N, Chandra D, Bose P, Malhotra P, Varma S. Multiparameter FLAER-based flow cytometry for screening of paroxysmal nocturnal hemoglobluniera enhances detection rate in patients with aplastic anemia. Ann Hematol. 2015;94(5):721–8.CrossRefGoogle Scholar
  7. 7.
    Rahman K, Gupta R, Yadav G, Hussein N, Singh MK, Nitynanand S. Fluorescent Aerolysin (FLAER)-based paroxysmal nocturnal hemoglobinuria (PNH) screening: a single center experience from India. Int J Lab Hematol. 2017;39(3):261–71.CrossRefGoogle Scholar
  8. 8.
    Hillmen P, Lewis SM, Bessler M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1995;333(19):1253–8.CrossRefGoogle Scholar
  9. 9.
    Wang SA, Pozdnyakova O, Jorgensen JL, Medeiros LJ, Stachurski D, Anderson M, et al. Detection of paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes and related bone marrow diseases, with emphasis on diagnostic pitfalls and caveats. Haematologica. 2009;94:29–36.CrossRefGoogle Scholar
  10. 10.
    Iwanaga M, Furukawa K, Amenomori T, Mori H, Nakamura H, Fuchigami K, et al. Paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes. Br J Haematol. 1998;102:465–74.CrossRefGoogle Scholar
  11. 11.
    Young NS. Paroxysmal nocturnal hemoglobinuria and myelodysplastic sydromes: clonal expansion of PIG-A-mutant hematopoietic cells in bone marrow failure. Haematologica. 2009;94(1):3–7.CrossRefGoogle Scholar
  12. 12.
    Sugimori C, Padron E, Caceres G, Shain K, Sokol L, Zhang L, et al. Paroxysmal nocturnal hemoglobinuria and concurrent JAK2V617F mutation. Blood Cancer J. 2012;2(3):e63.CrossRefGoogle Scholar
  13. 13.
    Strubing P. Paroxysmale Ha¨moglobinurie. Deutsch Medicinische Wochenschrift. 1882;8:17–21.CrossRefGoogle Scholar
  14. 14.
    Marchiafava E, Nazari A. Nuovo conttributo allo studiodegli itteri cronici emolitici. Il Policlinico. Sezion Med. 1911;18:241–8.Google Scholar
  15. 15.
    van den Bergh HAA. Ictére hémolytique avec criseshé moglobinuriques. Fragilité globulaire. Rev Med. 1911;31:63–9.Google Scholar
  16. 16.
    Crosby WH. Paroxysmal nocturnal hemoglobinuria. A classic description by Paul Strübing in 1882 and a bibliography of the disease. Blood. 1951;6:270–84.PubMedGoogle Scholar
  17. 17.
    Ham TH. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria. A study of the mechanism of hemolysis in relation to acid-base equilibrium. N Engl J Med. 1937;217:915–7.CrossRefGoogle Scholar
  18. 18.
    Ham TH. Studies on destruction of red blood cells. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria: an investigation of the mechanism of hemolysis, with observations of five cases. Arch Intern Med. 1939;64:1271–305.CrossRefGoogle Scholar
  19. 19.
    Ham TH, Dingle JH. Studies on destruction of red blood cells. II. Chronic hemolytic anemia and paroxysmal nocturnal hemoglobinuria: certain immunological aspects of the hemolytic mechanism with special reference to serum complement. J Clin Investig. 1939;18:657–72.CrossRefGoogle Scholar
  20. 20.
    Pillemer L, Blum L, Lepow IH, Ross OA, Todd EW, Wardlaw AC. The properdin system and immunity. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954;120:279–85.CrossRefGoogle Scholar
  21. 21.
    Dacie JV. Paroxysmal nocturnal haemoglobinuria. Proc R Soc Med U S A. 1963;56:587–96.Google Scholar
  22. 22.
    Rosse WF, Dacie JV. Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) redcells. The sensitivity of PNH red cells to lysis by complement and specific antibody. J Clin Investig. 1966;45:736–48.CrossRefGoogle Scholar
  23. 23.
    Aster RH, Enright SE. A platelet and granulocyte membrane defect in paroxysmal nocturnal hemoglobinuria: usefulness for the detection of platelet antibodies. J Clin Investig. 1969;48:1199–210.CrossRefGoogle Scholar
  24. 24.
    Hoffmann EM. Inhibition of complement by a substrate isolated from human erythrocytes. Extraction from human erythrocyte stomata. Immunochemistry. 1969;6:391–403.CrossRefGoogle Scholar
  25. 25.
    Hoffmann EM. Inhibition of complement by a substrate isolated from human erythrocytes. Studies on the site and mechanism of action. Immunochemistry. 1969;6:405–19.CrossRefGoogle Scholar
  26. 26.
    Oni SB, Osunkoya BO, Luzzatto L. Paroxysmalnocturnal hemoglobinuria: evidence for monoclonal origin of abnormal red cells. Blood. 1970;36:145–52.Google Scholar
  27. 27.
    Hoffmann E, Cheng W, Tomeu E, Renk C. Resistance of sheep erythrocytes to immune lysis by treatment of the cells with a human erythrocyte extract: studies on the site of inhibition. J Immunol. 1974;113:1501–9.PubMedGoogle Scholar
  28. 28.
    Stern M, Rosse WF. Two populations of granulocytes in paroxysmal nocturnal hemoglobinuria. Blood. 1979;53:928–34.PubMedGoogle Scholar
  29. 29.
    Pangburn MK, Schreiber RD, Müller-Eberhard HJ. Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A. 1983;80:5430–4.CrossRefGoogle Scholar
  30. 30.
    Davitz MA, Low MG, Nussenzweig V. Release of decay accelerating factor from the cell membrane by phosphatidylinositol-specific phospholipase C. J Exp Med. 1986;163:1150–61.CrossRefGoogle Scholar
  31. 31.
    Holguin MH, Fredrick LR, Bernshaw NJ, Parker CJ. Isolation and characterization of a protein from normal erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Investig. 1989;84:7–17.CrossRefGoogle Scholar
  32. 32.
    Miyata T, Takeda J, Iida J, Yamada N, Inoue N, Takahashi M, et al. The cloning of PIG-A, a component in the early step in GPI-anchor synthesis. Science. 1993;259:1318–20.CrossRefGoogle Scholar
  33. 33.
    Brodsky RA, Mukhina G, Li S, Nelson KL, Chiurrazi PL, Buckley T, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using florescent aerolysin. Am J Clin Pathol. 2000;114:459–66.CrossRefGoogle Scholar
  34. 34.
    Bessler M, Hiken J. The pathophysiology of disease in patients with paroxysmal nocturnal hemoglobinuria. Hematology Am Soc Hematol Educ Program. 2008;2008:104–8.CrossRefGoogle Scholar
  35. 35.
    Borowitz MJ, Craig FE, DiGuiseppe JA. On behalf of the Clinical Cytometry Society et al Guidelines for the diagnosis andmonitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78:211–30.PubMedGoogle Scholar
  36. 36.
    Sutherland DR, Keeney M, Illingworth A. Practical guidelines for high sensitivity detection and monitoring of paroxysmal nocturnal hemoglobinuria clones by flow cytometry. Cytometry B. 2012;82B:195–208.CrossRefGoogle Scholar
  37. 37.
    Crosby WH. Paroxysmal nocturnal hemoglobinuria. A specific test for the disease based ability of thrombin to activate the hemolytic factor. Blood. 1950;5:843–6.PubMedGoogle Scholar
  38. 38.
    Dacie JV, Lewis SM, Tills D. Comparative sensitivity of erythrocytes in paroxysmal nocturnal hemoglobinuria to hemolysis by normal serum and by high titre cold antibody. Br J Hematol. 1960;6:362–71.CrossRefGoogle Scholar
  39. 39.
    Hartman RC, Jenkins DE Jr, Arnold AB. Diagnostic specificity of sucrose hemolysis tests for paroxysmal nocturnal hemoglobinuria. Blood. 1970;35:462–75.Google Scholar
  40. 40.
    Kabaksi T, Rosse WF, Logue GL. The lysis of paroxysmal nocturnal hemoglobinuria red cells by serum and cobra factor. Br J Haematol. 1972;23:693–705.CrossRefGoogle Scholar
  41. 41.
    Brubaker LH, Schaberg DR, Jefferson DH, Mengel CE. A potential rapid screening test for paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1973;288:1059–60.CrossRefGoogle Scholar
  42. 42.
    Rosse WF, Dacie JV. The role of complement in the sensitivity of the paroxysmal nocturnal hemoglobinuria red cell to immune lysis. Bibl Haematol. 1965;23:11–8.PubMedGoogle Scholar
  43. 43.
    Rosse WF. Variations in the red cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 1973;24:327–42.CrossRefGoogle Scholar
  44. 44.
    Navenot JM, Bernard D, Petit-Frioux Y, Loirat MJ, Guimbretière J, Muller JY, Blanchard D. Rapid diagnosis of paroxysmal nocturnal hemoglobinuria by gel test agglutination. Rev Fr Transfus Hemobiol. 1993;36(2):135–47.PubMedGoogle Scholar
  45. 45.
    Gupta R, Pandey P, Choudhry R, Kashyap R, MehrotraM NS, Nityanand S. A prospective comparison of four techniques for diagnosis of paroxysmal nocturnal haemoglobinuria. Int J Lab Hematol. 2007;29:119–26.CrossRefGoogle Scholar
  46. 46.
    Sachdeva MU, Varma N, Chandra D, Bose P, Malhotra P, Varma S. Multiparameter FLAER-based flow cytometry for screening of paroxysmal nocturnal hemoglobinuria enhances detection rates in patients with aplastic anemia. Ann Hematol. 2015;94:721–8.CrossRefGoogle Scholar
  47. 47.
    Kinoshita T, Medof ME, Silber R, Nussenzweig V. Distributionof decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med. 1985;162:75–92.CrossRefGoogle Scholar
  48. 48.
    Diep DB, Nelson KL, Raja SM, Pleshak EN, Buckley TJ. Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J Biol Chem. 1998;273:2355–60.CrossRefGoogle Scholar
  49. 49.
    Sutherland DR, Kuek N, Davidson J, et al. Diagnosing PNH with FLAER and multiparameter flow cytometry. Cytometry B Clin Cytom. 2007;72:167–77.CrossRefGoogle Scholar
  50. 50.
    Hernandez-Campo PM, Almeida J, Sanchez ML, Malvezzi M, Orfao A. Normal patterns of expression of glycosylphosphatidylinositol anchored proteins on different subsets of peripheral blood cells: a frame of reference for the diagnosis of paroxysmal nocturnal hemoglobinuria. Cytometry B. 2006;70B:71–81.CrossRefGoogle Scholar
  51. 51.
    Sutherland DR, Acton E, Keeney M, Davis BH, Illingworth A. Use of CD157 in FLAER based assay for high sensitivity PNH granulocyte and PNH monocyte detection. Cytometry Part B. 2014;86B:44–55.CrossRefGoogle Scholar
  52. 52.
    Rahman K, Gupta R, Harankhedkar S, Gupta T, Sarkar MK, Nityanand S. Utility of CD157 as a common leukocytes marker for paroxysmal nocturnal hemoglobinuria screening in a single tube five color combination. Indian J Hematol Blood Transfus. 2018;34(2):304–9.  https://doi.org/10.1007/s12288-017-0867-z.CrossRefPubMedGoogle Scholar
  53. 53.
    Marinov I, Kohutova M, Tkakova V, Pesek A, Cermak J, Cetkovsky P. Clinical relevance of CD157 for rapid and cost effective simultaneous evaluation of PNH granulocyte and monocytes by low cytometry. Int J Lab Hematol. 2015;37:231–7.CrossRefGoogle Scholar
  54. 54.
    Marinov I, Illingworth AJ, Benko M, Sutherland DR. Performance characteristics of a non-fluorescent aerolysin-based paroxysmal nocturnal hemoglobinuria (PNH) assay for simultaneous evaluation of PNH neutrophils and PNH monocytes by flow cytometry, following published PNH guidelines. Cytometry B Clin Cytom. 2018;94(2):257–63.  https://doi.org/10.1002/cyto.b.21389.CrossRefPubMedGoogle Scholar
  55. 55.
    Keeney M, Illingworth A, Sutherland DR. Paroxysmal nocturnal hemoglobinuria assessment by flow cytometric analysis. Clin Lab Med. 2017;37(4):855–67.  https://doi.org/10.1016/j.cll.2017.07.007.CrossRefPubMedGoogle Scholar
  56. 56.
    Fletcher M, Sutherland DR, Whitby L, et al. Standardizing leucocyte PNH clonedetection: an international study. Cytometry B Clin Cytom. 2014;86(5):311–8.CrossRefGoogle Scholar
  57. 57.
    Marinov I, Kohoutova M, Tkacova V, et al. Intra- and interlaboratory variability of paroxysmal nocturnal hemoglobinuria testing by flow cytometry following the2012 practical guidelines for high-sensitivity paroxysmal nocturnal hemoglobinuria testing. Cytometry B Clin Cytom. 2013;84(4):229–36.CrossRefGoogle Scholar
  58. 58.
    Scienberg P, Wu CO, Numez O, Young NS. Predictive response of immunosuppressive therapy and survival in severe aplastic anemia. Br J Hematol. 2009;144:206–16.CrossRefGoogle Scholar
  59. 59.
    Sugimori C, Chuhjo T, Feng X, Yamazaki H, Takami A, Teramura M, Mizoguchi H, Omine M, Nakao S. Minor population of CD55-CD59-blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107:1308–14.CrossRefGoogle Scholar
  60. 60.
    Yoshida N, Yagasaki H, Takahashi Y, Yamamoto T, Liang J, Wang Y, Tanaka M, Hama A, Nishio N, Kobayashi R, Hotta N, Asami K, Kikuta A, Fukushima T, Hirano N, Kojima S. Clinical impact of HLA-DR15, a minor population of paroxysmal nocturnal haemoglobinuria-type cells, and an aplastic anaemia-associated autoantibody in children with acquired aplastic anaemia. Br J Haematol. 2008;142:427–35.CrossRefGoogle Scholar
  61. 61.
    Scheinberg P, Marte M, Nunez O, Young NS. Paroxysmal nocturnal hemoglobinuria clones in severe aplastic anemia patients treated with horse anti-thymocyte globulin plus cyclosporine. Haematologica. 2010;95:1075–80.CrossRefGoogle Scholar
  62. 62.
    Hochsmann B, Rojewski M, Schrezenmeier H. Paroxysmal nocturnal hemoglobinuria (PNH): higher sensitivity and validity in diagnosis and serial monitoring by flow cytometric analysis of reticulocytes. Ann Hematol. 2011;90:887–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of HematologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia

Personalised recommendations