Advertisement

Molecular Techniques for Prenatal Diagnosis

  • Anita Nadkarni
  • Priya Hariharan
Chapter

Abstract

Inherited haematological diseases are the disorders that primarily affect the fundamental process of haematopoiesis and blood components. Any change in DNA sequence could be pathogenic if it has abnormal effect on biologic pathways within the cell. In present medical diagnosis, prenatal examination plays an important role. The era of prenatal diagnosis has evolved tremendously over the last two decades. The recent advances in molecular genetics and cytogenetic methods along with development in ultra-sonographic techniques made earlier and reliable prenatal diagnosis possible. With the evolvement of human genome project, there is a rapid increase in the number of genetic disorders for whom we can offer the prenatal diagnosis. Amniocentesis and chorionic villus sampling are two widely used invasive prenatal diagnostic procedures. To obtain complete foetal genetic information and avoid endangering the foetus, non-invasive prenatal diagnosis has become the vital goal of prenatal diagnosis. In this chapter, we have tried to summarize the current methodology and the newer techniques for the prenatal diagnosis of inherited haematological disorders.

Keywords

Invasive and non-invasive prenatal diagnosis Molecular diagnosis Haematological disorders 

References

  1. 1.
    Wieacker P, Steinhard J. The prenatal diagnosis of genetic diseases. Dtsch Arztebl Int. 2010;107:857–62.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Brodsky R, Jones R. Aplastic anaemia. Lancet. 2005;365:1647–56.CrossRefGoogle Scholar
  3. 3.
    Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–48.CrossRefGoogle Scholar
  4. 4.
    Chirnomas S, Kupfer G. The inherited bone marrow failure syndromes. Pediatr Clin North Am. 2013;60:1–21.CrossRefGoogle Scholar
  5. 5.
    Dokal I, Vulliamy T. Inherited bone marrow failure syndromes. Haematologica. 2010;95:1236–40.CrossRefGoogle Scholar
  6. 6.
    Kohne E. Haemoglobinopathies clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108:532–40.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Clarke G, Higgins T. Laboratory investigation of haemoglobinopathies and thalassaemias: review and update. Clin Chem. 2000;46:1284–90.PubMedGoogle Scholar
  8. 8.
    Gallagher P. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am. 2013;60:1349–62.CrossRefGoogle Scholar
  9. 9.
    Bianchi P, Fermo E, Imperiali F, et al. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. 2011;9:274–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Koralkova P, Solinge W, Wijk R. Rare hereditary red blood cell enzymopathies associated with haemolytic anaemia—pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014;36:388–97.CrossRefGoogle Scholar
  11. 11.
    McCusker C, Warrington R. Primary immunodeficiency. Allergy Asthma Clin Immunol. 2011;7:1–8.CrossRefGoogle Scholar
  12. 12.
    Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22:915–31.CrossRefGoogle Scholar
  13. 13.
    Buyukasik Y, Haznedaroglu I, Ilhan O. Chronic myeloid leukemia: practical issues in diagnosis, treatment and follow-up. Int J Hematol Oncol. 2010;20:1–12.CrossRefGoogle Scholar
  14. 14.
    Johnson B, Fletcher S, Morgan N. Inherited thrombocytopenia: novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan. Platelets. 2016;27:519–25.CrossRefGoogle Scholar
  15. 15.
    D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transfus. 2009;7:278–92.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bowen J. Haemophilia A and haemophilia B: molecular insights. Mol Pathol. 2002;55:1–18.CrossRefGoogle Scholar
  17. 17.
    Cheng W, Hsiao C, Tseng H, et al. Non invasive prenatal diagnosis. Taiwan J Obstet Gynecol. 2015;54:343–9.CrossRefGoogle Scholar
  18. 18.
    Old J, Ward R, Petrou M, et al. First-trimester fetal diagnosis for haemoglobinopathies: three cases. Lancet. 1982;2:1413–6.CrossRefGoogle Scholar
  19. 19.
    Stott P. Sampling of the chorionic villi: a technique to complement amniocentesis. J R Coll Gen Pract. 1985;35:316–7.PubMedCentralGoogle Scholar
  20. 20.
    Kazy Z, Rozofsky I, Bakharev V. Chorion biopsy in early pregnancy: a method of early prenatal diagnosis for inherited disorders. Prenat Diagn. 1982;2:39–45.CrossRefGoogle Scholar
  21. 21.
    South S, Chen W, Brothman A. Genomic medicine in prenatal diagnosis. Clin Obstet Gynecol. 2008;51:62–73.CrossRefGoogle Scholar
  22. 22.
    Simoni G, Colognato R. The amniotic fluid-derived cells: the biomedical challenge for the third millennium. J Prenat Med. 2009;3:34–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Shulman L, Elias S. Amniocentesis and chorionic villus sampling. West J Med. 1993;159:260–8.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Daffos F, Capella-Pavlovsky M, Forestier F. Fetal blood sampling via the umbilical cord using a needle guided by ultrasound. Report of 66 cases. Prenat Diagn. 1983;3:271–7.CrossRefGoogle Scholar
  25. 25.
    Henderson J, Weiner C. Cordocentesis. Glob Libr Womens Med. 2008.  https://doi.org/10.3843/GLOWM.10212. Accessed 25/12/2017.
  26. 26.
    Kleihauer E, Braun H, Betke K. Demonstration of fetal hemoglobin in erythrocytes of a blood smear. Klin Wochenschr. 1957;35:637–8.CrossRefGoogle Scholar
  27. 27.
    Budau G, Anastasiu D, Muresan C, et al. Cordocentesis in prenatal diagnosis case report. J Exp Med Surg Res. 2008;3:100–4.Google Scholar
  28. 28.
    Liao C, Wei J, Li Q, et al. Efficacy and safety of cordocentesis for prenatal diagnosis. Int J Gynaecol Obstet. 2006;93:13–7.CrossRefGoogle Scholar
  29. 29.
    Orlandi F, Damiani G, Jakil C, et al. The risks of early cordocentesis (12-21 weeks): analysis of 500 procedures. Prenat Diagn. 1990;10:425–8.CrossRefGoogle Scholar
  30. 30.
    Wright C, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update. 2009;15:139–51.CrossRefGoogle Scholar
  31. 31.
    Lo Y, Tein M, Lau T, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for non-invasive prenatal diagnosis. Am J Hum Genet. 1998;62:768–75.CrossRefGoogle Scholar
  32. 32.
    Alberry M, Maddocks D, Jones M, et al. Free fetal DNA in maternal plasma in an embryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn. 2007;27:415–8.CrossRefGoogle Scholar
  33. 33.
    Birch L, English A, O’Donoghue K, et al. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem. 2005;51:312–20.CrossRefGoogle Scholar
  34. 34.
    Lo D, Zhang J, Leung N, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.CrossRefGoogle Scholar
  35. 35.
    D’Souza E, Sawant P, Nadkarni A, et al. Detection of fetal mutations causing hemoglobinopathies by non-invasive prenatal diagnosis from maternal plasma. J Postgrad Med. 2013;59:15–20.CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Harper C. Introduction. Preimplantation genetic diagnosis. London: Wiley; 2001. p. 3–12.CrossRefGoogle Scholar
  38. 38.
    Handyside A, Kontogianni E, Hardy K, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344:768–70.CrossRefGoogle Scholar
  39. 39.
    Basille C, Frydman R, El Aly A, et al. Preimplantation genetic diagnosis: state of the art. Eur J Obstet Gynecol Reprod Biol. 2009;145:9–13.CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Geraedts J, De Wert G. Preimplantation genetic diagnosis. Clin Genet. 2009;76:315–25.CrossRefGoogle Scholar
  42. 42.
    Decorte R, Cuppens H, Marynen P, et al. Rapid detection of hypervariable regions by the polymerase chain reaction technique. DNA Cell Biol. 1990;9:461–9.CrossRefGoogle Scholar
  43. 43.
    Fakher R, Bijan K, Taghi A. Application of diagnostic methods and molecular diagnosis of hemoglobin disorders in Khuzestan province of Iran. Indian J Hum Genet. 2007;13:5–15.CrossRefGoogle Scholar
  44. 44.
    Colah R, Gorakshakar A, Lu C, et al. Application of covalent reverse dot-blot hybridization for rapid prenatal diagnosis of the common Indian thalassemia syndromes. Indian J Hematol Blood Transfus. 1997;15:10–3.Google Scholar
  45. 45.
    Newton R, Graham A, Heptinstall E, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17:2503–16.CrossRefGoogle Scholar
  46. 46.
    Old J, Harteveld C, Traeger-Synodinos J, et al. Prevention of thalassaemias and other haemoglobin disorders. Vol. 2. Laboratory protocols [Internet]. 2nd ed. 2012. Thalassemia International Federation, Nicosia, Cyprus.Google Scholar
  47. 47.
    Gorakshakar A, Lulla C, Nadkarni A, et al. Prenatal diagnosis of beta-thalassemia among Indians using denaturing gradient gel electrophoresis. Haemoglobin. 1997;21:421–35.CrossRefGoogle Scholar
  48. 48.
    Nataraj A, Olivos-Glander I, Kusukawa N, et al. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis. 1999;20:1177–85.CrossRefGoogle Scholar
  49. 49.
    Rahimi A, Shahhosseiny H, Ahangari G, et al. Prenatal sex determination in suspicious cases of X-linked recessive diseases by the amelogenin gene. Iran J Basic Med Sci. 2014;17:134–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Stuppia L, Antonucci I, Palka G, et al. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13:3245–76.CrossRefGoogle Scholar
  51. 51.
    Gallienne A, Dréau H, McCarthy J, et al. Multiplex ligation-dependent probe amplification identification of 17 different β-globin gene deletions (including four novel mutations) in the UK population. Hemoglobin. 2009;33:406–16.CrossRefGoogle Scholar
  52. 52.
    Ku C, Cooper D, Polychronakos C, et al. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012;71:5–14.CrossRefGoogle Scholar
  53. 53.
    Bamshad M, Ng S, Bigham A, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.CrossRefGoogle Scholar
  54. 54.
    Schuster S. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anita Nadkarni
    • 1
  • Priya Hariharan
    • 1
  1. 1.National Institute of Immunohematology (ICMR)MumbaiIndia

Personalised recommendations