Advertisement

Role of Laboratory in Hematopoietic Stem Cell Transplantation

  • Dinesh ChandraEmail author
  • Ruchi Gupta
Chapter

Abstract

Hematopoietic stem cell transplantation (HSCT) is considered as the standard of care for numerous hematological malignancies. A successful HSCT requires the support of a good clinical laboratory which performs various routine clinical tests as well as transplantation specific investigations. While a transplantation-specific laboratory should be well equipped and have the infrastructure for performing investigations pertaining to tissue typing, CD34 enumeration by flow cytometry, assessment of graft viability/rejection, evaluation of minimal residual disease, and measurement of immunosuppressive drugs; the importance of the routine clinical laboratory tests like biochemical, hematological, serological, urinary, and microbiological examinations too cannot be undermined in a transplant setup. The clinical laboratory monitoring is important at each step and contributes to an early diagnosis, monitoring, and thereby enhancing prevention and treatment of the complications or adverse events. It is essential to provide information regarding engraftment, chimerism, diagnosing infections, veno-occlusive disease, therapy-related toxicities, graft versus host disease, and thrombotic microangiopathy which are the major causes of mortality and morbidity in HSCT. In this chapter, the importance of a laboratory in different facets of HSCT will be discussed.

Keywords

Hematopoietic stem cell transplantation HLA typing Chimerism CD34+ cell enumeration 

References

  1. 1.
    Kanda Y, Kanda J, Atsuta Y, et al. Changes in the clinical impact of high-risk human leukocyte antigen allele mismatch combinations on the outcome of unrelated bone marrow transplantation. Biol Blood Marrow Transplant. 2014;20:526–35.CrossRefGoogle Scholar
  2. 2.
    Krausa P, Browning M. Detection of HLA gene polymorphism. In: Browning M, McMichael A, editors. HLA and MHC: genes, molecules and function. Oxford: BIOS Scientific; 1996. p. 113–37.Google Scholar
  3. 3.
    Piancatelli D. Human leukocyte antigen-A, -B, and -Cw polymorphism in a Berber population from North Morocco using sequence-based typing. Tissue Antigens. 2004;26:78–87.Google Scholar
  4. 4.
    Ferrer A, Fernandez ME, Nazabal M. Biotechnol Aplicada. 2005;22:91–101.Google Scholar
  5. 5.
    Erlich HA, Opelz G, Hansen J. Immunity. 2001;14:347–56.CrossRefGoogle Scholar
  6. 6.
    Dunn PP. Novel approaches and technologies in molecular HLA typing. Methods Mol Biol. 2015;1310:213–0300.CrossRefGoogle Scholar
  7. 7.
    Nunes E, Heslop H, Fernandez-Vina M, Taves C, Wagenknecht DR, Eisenbrey AB, et al. Definitions of histocompatibility typing terms. Blood. 2011;118:e180–3.CrossRefGoogle Scholar
  8. 8.
    Olerup O, Zetterquist H. HLA-DRB1*01 subtyping by allele-specific PCR amplification: a sensitive, specific and rapid technique. Tissue Antigens. 1991;37:197–204.CrossRefGoogle Scholar
  9. 9.
    Testi M, Andreani M. Luminex-based methods in high-resolution HLA typing. Methods Mol Biol. 2015;1310:231–45.CrossRefGoogle Scholar
  10. 10.
    Zhang GL, Keskin DB, Lin HN, Lin HH, De Luca DS, Leppanen S, et al. Human leukocyte antigen typing using a knowledge base coupled with a high-throughput oligonucleotide probe array analysis. Front Immunol. 2014;5:597.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012;80:1–11.CrossRefGoogle Scholar
  12. 12.
    Hourmant M, Cesbron-Gautier A, Terasaki PI, Mizutani K, Moreau A, Meurette A, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation. J Am Soc Nephrol. 2005;16:2804–12.CrossRefGoogle Scholar
  13. 13.
    Ottinger HD, Rebmann V, Pfeiffer KA, Beelen DW, Kremens B, Runde V, et al. Positive serum crossmatch as predictor for graft failure in HLA mismatched allogeneic blood stem cell transplantation. Transplantation. 2002;73:1280–5.CrossRefGoogle Scholar
  14. 14.
    Allan DS, Keeney M, Howson-Jan K, et al. Number of viable CD34(+) cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002;29:967–72.CrossRefGoogle Scholar
  15. 15.
    Bittencourt H, Rocha V, Chevret S, Socié G, Espérou H, Devergie A, et al. Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. Blood. 2002;99:2726–33.CrossRefGoogle Scholar
  16. 16.
    Sutherland RD, Michael Keeney M, Gratama JW. Enumeration of CD34+ hematopoietic stem and progenitor cells. Curr Protoc Cytom. 2003;25:6.4.1–6.4.23.CrossRefGoogle Scholar
  17. 17.
    Siena S, Bregni M, Belli N. Flow cytometry for clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients. Blood. 1991;77:400–9.PubMedGoogle Scholar
  18. 18.
    Sutherland DR, Anderson L, Keeney M. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. J Hematother. 1996;5:213–36.CrossRefGoogle Scholar
  19. 19.
    Sutherland DR, Nayyar R, Acton E, Giftakis A, Dean S, Mosiman VL. Comparison of two single-platform ISHAGEbased CD34 enumeration protocols on BD FACSCalibur and FACSCantoflow cytometers. Cytotherapy. 2009;11:595–605.CrossRefGoogle Scholar
  20. 20.
    Aird W, Labopin M, Gorin NC, Antin JH. Long-term cryopreservation of human stem cells. Bone Marrow Transplant. 1992;9:487–90.PubMedGoogle Scholar
  21. 21.
    Gonçalves TL, Benvegnú DM, Bonfanti G. Specific factors influence the success of autologous and allogeneic hematopoietic stem cell transplantation. Oxidative Med Cell Longev. 2009;2:82–7.CrossRefGoogle Scholar
  22. 22.
    Morkis IV, Farias MG, Rigoni LD, Scotti L, Gregianin LJ, Daudt LE, et al. Assessment of immature platelet fraction and immature reticulocyte fraction as predictors of engraftment after hematopoietic stem cell transplantation. Int J Lab Hematol. 2015;37:259–64.CrossRefGoogle Scholar
  23. 23.
    Rose HJ. A handbook of Greek mythology. London: Routledge; 1989.Google Scholar
  24. 24.
    McCann SR, Lawler M. Mixed chimerism: detection and significance following BMT. Bone Marrow Transplant. 1993;11:91–4.PubMedGoogle Scholar
  25. 25.
    Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant. 2004;34:1–12.CrossRefGoogle Scholar
  26. 26.
    Ghaffari SH, Chahardouli B, Gavamzadeh A, Alimoghaddam K. Evaluation of hematopoietic Chimerism following allogeneic peripheral blood stem cell transplantation with Amelogenin marker. Arch Iranian Med. 2008;11:35–41.Google Scholar
  27. 27.
    Lion T. Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia. 2003;17:252–4.CrossRefGoogle Scholar
  28. 28.
    Brunstein CG, Hirsch BA, Miller JS, et al. Non-leukemic autologous reconstitution after allogeneic bone marrow transplantation for Ph-positive chronic myelogenousleukemia: extended remission preceding eventual relapse. Bone Marrow Transplant. 2000;26:1173–7.CrossRefGoogle Scholar
  29. 29.
    van der Velden VH, Hochhaus A, Cazzaniga G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17:1013–34.CrossRefGoogle Scholar
  30. 30.
    Maschmeyer G, Ljungman P. Infections in hematopoietic stem cell transplant recipients. In: Safdar A, editor. Principles and practice of cancer infectious diseases, current clinical oncology. Berlin: Springer Science+Business Media, LLC; 2011.  https://doi.org/10.1007/978-1-60761-644-3_2.CrossRefGoogle Scholar
  31. 31.
    Walter E, Bowden RA. Infection in the bone marrow transplant recipient. Infect Dis Clin N Am. 1995;9:823–47.Google Scholar
  32. 32.
    Nichols WG, Corey L, Gooley T, et al. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185:273–82.CrossRefGoogle Scholar
  33. 33.
    Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, John R, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15:1143–238.CrossRefGoogle Scholar
  34. 34.
    Akan H, Antia VP, Kouba M, Sinkó J, Tănase AD, Vrhovac R, et al. Preventing invasive fungal disease in patients with haematological malignancies and the recipients of haematopoietic stem cell transplantation: practical aspects. J Antimicrob Chemother. 2013;68:5–16.CrossRefGoogle Scholar
  35. 35.
    Richardson M, Ellis M. Clinical and laboratory diagnosis. Hosp Med. 2000;61:610–4.CrossRefGoogle Scholar
  36. 36.
    Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42:1417–27.CrossRefGoogle Scholar
  37. 37.
    Odabasi Z, Mattiuzzi G, Estey E, et al. Beta-d-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis. 2004;39:199–205.CrossRefGoogle Scholar
  38. 38.
    Pickering JW, Sant HW, Bowles CAP, Roberts WL, Woods GL. Evaluation of a (17→3)-b-d-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2005;43:5957–62.CrossRefGoogle Scholar
  39. 39.
    Glucksberg HR, storb R, Fefer A, Buckner cD, Neiman pE, clift RA, Lerner KG, Thomas ED. Clinical manifestations of graft-versus-host disease in human recipients of marrow from Hl-A-matched sibling donors. Transplantation. 1974;18:295–304.CrossRefGoogle Scholar
  40. 40.
    Wakui M, Okamoto S, Ishida A, et al. Prospective evaluation for upper gastrointestinal tract acute graft-versus-host disease after hematopoietic stem cell transplantation. Bone Marrow Transplant. 1999;23:573.CrossRefGoogle Scholar
  41. 41.
    Sale GE, Shulman HM, McDonald GB, Thomas ED. Gastrointestinal graft-versus-host disease in man. A clinicopathologic study of the rectal biopsy. Am J Surg Pathol. 1979;3:291–9.CrossRefGoogle Scholar
  42. 42.
    Bone Marrow Transplantation. Cambridge, MA: Blackwell; 1994.Google Scholar
  43. 43.
    Shulman HM, Cardona DM, Greenson JK et al. NIH Consensus development project on criteria for clinical trials in chronic graft-versus-host disease: II. The 2014 Pathology Working Group Report. Biol Blood Marrow Transplant. 2015;21(4):589–603.CrossRefGoogle Scholar
  44. 44.
    Esteban JM, Somlo G. Skin biopsy in allogeneic and autologous bone marrow transplant patients: a histologic and immunohistochemical study and review of the literature. Mod Pathol. 1995;8:59–64.PubMedGoogle Scholar
  45. 45.
    O’Shaughnessy EM, Shea YM, Witebsky FG. Laboratory diagnosis of invasive mycoses. Infect Dis Clin N Am. 2003;17:135–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of HematologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia

Personalised recommendations