Advertisement

Molecular Biology of B- and T-ALL

  • Jay Singh
  • Rajive Kumar
  • Anita ChopraEmail author
Chapter

Abstract

Acute lymphoblastic leukemia (ALL) is traditionally classified into precursor B-, precursor T-, and B-cell (Burkitt) and then subclassified on the basis of recurrent cytogenetic changes that include aneuploidy and translocations (75% of precursor B and 15% of T-ALL patients) [1].

References

  1. 1.
    Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120(6):1165–74.CrossRefGoogle Scholar
  2. 2.
    Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.CrossRefGoogle Scholar
  3. 3.
    Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125:3977–87.CrossRefGoogle Scholar
  4. 4.
    Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130(19):2064–72.CrossRefGoogle Scholar
  5. 5.
    Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.CrossRefGoogle Scholar
  6. 6.
    Pui CH, et al. Acute lymphoblastic leukemia. N Engl J Med. 2004;350:1535–48.CrossRefGoogle Scholar
  7. 7.
    Shuster JJ, et al. Identification of newly diagnosed children with acute lymphocytic leukemia at high risk for relapse. Cancer Res Ther Control. 1999;9:101–7.Google Scholar
  8. 8.
    Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14:18–24.CrossRefGoogle Scholar
  9. 9.
    Schultz KR, Pullen DJ, Sather HN, et al. Risk-and response-based classification of childhood B precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109:926–35.CrossRefGoogle Scholar
  10. 10.
    Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.CrossRefGoogle Scholar
  11. 11.
    Caye A, et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2013;98:597–601.CrossRefGoogle Scholar
  12. 12.
    Pui CH, et al. Immunologic, cytogenetic and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol. 1994;12:2601–6.CrossRefGoogle Scholar
  13. 13.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatmentoutcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.CrossRefGoogle Scholar
  14. 14.
    Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111:4477–89.CrossRefGoogle Scholar
  15. 15.
    Bhojwani D, et al. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin N Am. 2015;62(1):47–60.CrossRefGoogle Scholar
  16. 16.
    Forghieri F, Luppi M, Potenza L. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology. 2015;20(10):618–9.CrossRefGoogle Scholar
  17. 17.
    Mullighan CG, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.CrossRefGoogle Scholar
  18. 18.
    Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009 Jul;23(7):1209–18.CrossRefGoogle Scholar
  19. 19.
    Kuiper RP, et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia. 2007;21:1258–66.CrossRefGoogle Scholar
  20. 20.
    van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te Kronnie G, Harrison CJ, Cavé H, Trka J, Saha V, Schrappe M, Pieters R, Biondi A, Valsecchi MG, Stanulla M, den Boer ML, Cazzaniga G. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123(11):1691–8.CrossRefGoogle Scholar
  21. 21.
    Churchman ML, Evans K, Richmond J, Robbins A, Jones L, Shapiro IM, Pachter JA, Weaver DT, Houghton PJ, Smith MA, Lock RB, Mullighan CG. Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL. JCI Insight. 2016;1(4):e86082.CrossRefGoogle Scholar
  22. 22.
    Yeoh EJ, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133.CrossRefGoogle Scholar
  23. 23.
    Mullighan CG, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64.CrossRefGoogle Scholar
  24. 24.
    Clappier E, Auclerc MF, Rapion J, Bakkus M, Caye A, Khemiri A, Giroux C, Hernandez L, Kabongo E, Savola S, Leblanc T, Yakouben K, Plat G, Costa V, Ferster A, Girard S, Fenneteau O, Cayuela JM, Sigaux F, Dastugue N, Suciu S, Benoit Y, Bertrand Y, Soulier J, Cavé H. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28(1):70–7.CrossRefGoogle Scholar
  25. 25.
    Zhang X, Rastogi P, Shah B, Zhang L. B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget. 2017;8:66728–41.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J, Jones L, Masic D, Minto L, Morrison H, Ryan S, Robinson H, Sinclair P, Moorman AV, Strefford JC, Harrison CJ. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2011;117:6848–55.CrossRefGoogle Scholar
  27. 27.
    Harrison CJ. Blood spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125(9):1383–6.CrossRefGoogle Scholar
  28. 28.
    Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–80.CrossRefGoogle Scholar
  29. 29.
    Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.CrossRefGoogle Scholar
  30. 30.
    Roberts KG, et al. Outcomes of children with BCR-ABL1–like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32:3012–20.CrossRefGoogle Scholar
  31. 31.
    Roberts KG, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.CrossRefGoogle Scholar
  32. 32.
    Pui CH, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.CrossRefGoogle Scholar
  33. 33.
    Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3398–406.CrossRefGoogle Scholar
  34. 34.
    Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.CrossRefGoogle Scholar
  35. 35.
    Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.CrossRefGoogle Scholar
  36. 36.
    Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510.CrossRefGoogle Scholar
  37. 37.
    Soulier J, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106(1):274–86.CrossRefGoogle Scholar
  38. 38.
    Coustan-Smith E, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.CrossRefGoogle Scholar
  39. 39.
    Homminga I, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484–97.CrossRefGoogle Scholar
  40. 40.
    Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9:1783–6.PubMedGoogle Scholar
  41. 41.
    Van Vlierberghe P, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9.CrossRefGoogle Scholar
  42. 42.
    van Grotel M, van den Heuvel-Eibrink MM, van Wering ER, van Noesel MM, Kamps WA, Veerman AJ, Pieters R, Meijerink JP. CD34 expression is associated with poor survival in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;51(6):737–40.CrossRefGoogle Scholar
  43. 43.
    Graux C, Cools J, Hagemeijer A. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9.CrossRefGoogle Scholar
  44. 44.
    Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494–507.CrossRefGoogle Scholar
  45. 45.
    Haydu JE, Ferrando AA. Early T-cell precursor acute lymphoblastic leukaemia. Curr Opin Hematol. 2013;20:369–73.CrossRefGoogle Scholar
  46. 46.
    Gutierrez A, Dahlberg SE, Neuberg DS, et al. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3816–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory Oncology Unit, Dr. BRAIRCHAIIMSNew DelhiIndia
  2. 2.Mahavir Cancer SansthanPatnaIndia

Personalised recommendations