Microalgae and Microorganisms: Important Regulators of Carbon Dynamics in Wetland Ecosystem

  • Nisha Yadav
  • D. P. Singh


Wetlands, a dynamic and natural ecosystem characterized by waterlogged conditions, are used for the benefit of mankind since decades. One of the most important ecological functions of the wetlands is their ability to sustain rich biodiversity and storage of carbon. The carbon stock in the wetlands is mainly regulated by carbon cycling mediated by microorganisms and photoautotrophs (algae and plants) in the wetland. Carbon storage in the wetlands is often controlled by both decomposition of labile carbon and carbon fixation by the photosynthesis. This internal carbon dynamics in the wetland ecosystem influences the atmospheric carbon cycle. Under anaerobic condition, detritus chain involves microbial conversion of biodegradable material into a mixture of methane (CH4) and carbon dioxide (CO2) with small amounts of ammonium and hydrogen sulphide (H2S). Methanotrophs are unique group of aerobic, gram-negative bacteria that use CH4 as a source of carbon and energy. Wetlands act as biofilters through a combination of physical, chemical and biological factors which contribute in the reduction of pathogen and waste water. Since algae play a crucial role in carbon dynamics, the present chapter emphasizes the role of algae in regulation of carbon, water hydrology and other ecosystem services of the wetland.


Wetland Carbon reserve Ecological functions Methanotroph Bioindicators 



I would like to extend my gratitude to Vice-Chancellor, BBAU and UGC for providing the funds to carry out my research work. I am also thankful to Prof. D. P. Singh and Dr. A. K. Upadhyay for assistance in the preparation of chapter.


  1. Abril G, Martinez JM, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim JH, Bernardes MC, Savoye N, Deborde J (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395CrossRefGoogle Scholar
  2. Banuelos GS, Terry N (1999) Phytoremediation of contaminated soil and water. CRC Press, Boca RatonGoogle Scholar
  3. Barber CJ, Grice K, Bastow TP, Alexander R, Kagi RI (2001) The identification of crocetane in Australian crude oils. Org Geochem 32:943–947CrossRefGoogle Scholar
  4. Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320CrossRefGoogle Scholar
  5. Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Körner S, Heimann M, Dlugokencky EJ (2007) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2 evaluation based on inverse model simulations. J Geophys Res Atmos 112(D2).
  6. Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903CrossRefGoogle Scholar
  7. Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847CrossRefGoogle Scholar
  8. Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Ann Rev Ecol System 12:123–161CrossRefGoogle Scholar
  9. Brix H (1994) Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Sci Technol 30(8):209–223CrossRefGoogle Scholar
  10. Burgoon PS, Reddy KR, DeBusk TA (1995) Performance of subsurface flow wetlands with batch-load and continuous-flow conditions. Water Environ Res 67:855–862CrossRefGoogle Scholar
  11. Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32Google Scholar
  12. Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325CrossRefGoogle Scholar
  13. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefGoogle Scholar
  14. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRefGoogle Scholar
  15. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292CrossRefGoogle Scholar
  16. Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J, Raskin RG (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253CrossRefGoogle Scholar
  17. Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC press, Boca RatonCrossRefGoogle Scholar
  18. Florence TM, Stauber JL, Ahsanullah M (1994) Toxicity of nickel ores to marine organisms. Sci Total Environ 148:139–155CrossRefGoogle Scholar
  19. Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–396CrossRefGoogle Scholar
  20. Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini AR, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soil Sediments 3:109CrossRefGoogle Scholar
  21. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047CrossRefGoogle Scholar
  22. Ho SC (1979) On the chemical and algal growth potential of the surface water of the Muda river irrigation system, West Malaysia. In: Furtado JI (ed) Tropical ecology and development; 5th Proceeding of the International Tropical Ecology Symposium. Kuala Lumpur, Malaysia, pp 989–998Google Scholar
  23. Hornibrook ER, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027CrossRefGoogle Scholar
  24. Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69:5060–5069CrossRefGoogle Scholar
  25. Immirzi CP, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling, report no. 11, Wetlands Research Group, Friends of the Earth, London, p 145Google Scholar
  26. Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern performing wetlands. Trends Ecol Evol 14:385–388CrossRefGoogle Scholar
  27. Joosten H, Clarke D (2002) Wise use of mires and peatlands – backgrounds and principles, including a framework for decision-making. International Mire Conservation Group / International Peat Society, JyväskyläGoogle Scholar
  28. Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sci 75:151–167CrossRefGoogle Scholar
  29. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Baca RatonGoogle Scholar
  30. Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837CrossRefGoogle Scholar
  31. Khmelenina VN, Colin Murrell J, Smith TJ, Trotsenko YA (2018) Physiology and biochemistry of the aerobic Methanotrophs. In: Aerobic utilization of hydrocarbons, oils and lipids, pp 1–25Google Scholar
  32. Kim DG, Kirschbaum MU (2015) The effect of land-use change on the net exchange rates of greenhouse gases: a compilation of estimates. Agric Ecosyst Environ 208:114–126CrossRefGoogle Scholar
  33. King GM (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol 60:3220–3227Google Scholar
  34. Kolkwitz R, Marsson M (1909) Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 2(1–2):126–152CrossRefGoogle Scholar
  35. Kragh T, Søndergaard M (2004) Production and bioavailability of autochthonous dissolved organic carbon: effects of mesozooplankton. Aquatic Microbial Ecol 36:61–72CrossRefGoogle Scholar
  36. Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629CrossRefGoogle Scholar
  37. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756CrossRefGoogle Scholar
  38. Lima SA, Castro PM, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15:137–142CrossRefGoogle Scholar
  39. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  40. McCarthy DT, Bach P, Deletic A (2009) Conducting a microbial budget–a literature review. Melbourne Water, MelbourneGoogle Scholar
  41. Mitra S, Wassmann R, Vlek PL (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35Google Scholar
  42. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, HobokenGoogle Scholar
  43. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597CrossRefGoogle Scholar
  44. Moor H, Hylander K, Norberg J (2015) Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44(1):13–126Google Scholar
  45. Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophy Res Lett 20:587–590CrossRefGoogle Scholar
  46. Moreno-Mateos D, Power ME, Comin FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:e1001247CrossRefGoogle Scholar
  47. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207CrossRefGoogle Scholar
  48. Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nat Commun 7:13835CrossRefGoogle Scholar
  49. Nakano T, Sawamoto T, Morishita T, Inoue G, Hatano R (2004) A comparison of regression methods for estimating soil–atmosphere diffusion gas fluxes by a closed-chamber technique. Soil Biol Biochem 36:107–113CrossRefGoogle Scholar
  50. Ni HG, Lu FH, Luo XL, Tian HY, Zeng EY (2008) Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Mar Pollut Bull 56:1150–1157CrossRefGoogle Scholar
  51. Omar WMW (2010) Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop Life Sci Res 21:51Google Scholar
  52. Ottova V, Balcarová J, Vymazal J (1997) Microbial characteristics of constructed wetlands. Water Sci Technol 35:117–123CrossRefGoogle Scholar
  53. Owen CR (1995) Water budget and flow patterns in an urban wetland. J Hydrodyn 169:171–187CrossRefGoogle Scholar
  54. Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5:78–82. Scholar
  55. Pandey V, Singh JS, Singh DP, Singh R P (2011) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol, 11241–11250Google Scholar
  56. Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11:241–250CrossRefGoogle Scholar
  57. Pant HK, Rechcigl JE, Adjei MB (2003) Carbon sequestration in wetlands: concept and estimation. Food Agric Environ 1:308–313Google Scholar
  58. Parish F, Sirin A, Charman D, Joosten H, Minayeva T & Silvius M (eds.) (2008) Assessment on peatlands, biodiversity and climate change: main report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. p 179Google Scholar
  59. Patrick R (1971) Diatom communities. In: Cairns J (ed) The structure and function of freshwater microbial communities. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  60. Pinney ML, Westerhoff PK, Baker L (2000) Transformations in dissolved organic carbon through constructed wetlands. Water Res 34:1897–1911CrossRefGoogle Scholar
  61. Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586CrossRefGoogle Scholar
  62. Rai UN, Tripathi RD, Singh NK, Upadhyay AK, Dwivedi S, Shukla MK, Mallick S, Singh SN, Nautiyal CS (2013) Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour Technol 148:535–541CrossRefGoogle Scholar
  63. Rai UN, Upadhyay AK, Singh NK (2015) Constructed wetland: an ecotechnology for wastewater treatment and conservation of ganga water quality. In: Environmental sustainability. Springer, New Delhi, pp 251–264Google Scholar
  64. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRefGoogle Scholar
  65. Rebelo LM, Finlayson CM, Strauch A, Rosenqvist A, Perennou C, Tottrup C, Hilarides L, Paganini M, Wielaard N, Siegert F, Ballhorn U, Navratil P, Franke J, Davidson N (2018) The use of Earth Observation for wetland inventory, assessment and monitoring: An information source for the Ramsar Convention on Wetlands. Ramsar Technical Report No.10. Gland, Switzerland: Ramsar Convention SecretariatGoogle Scholar
  66. Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol 35:1–10CrossRefGoogle Scholar
  67. Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands. Science and applications, CRC/Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  68. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57CrossRefGoogle Scholar
  69. Rosenthal G (2006) Restoration of wet grasslands–effects of seed dispersal, persistence and abundance on plant species recruitment. Basic Appl Ecol 7:409–421CrossRefGoogle Scholar
  70. Roulet NT, Ash R, Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res Atmos 97:3739–3749CrossRefGoogle Scholar
  71. Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Glob Biogeochem Cycles 15:337–350CrossRefGoogle Scholar
  72. Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354CrossRefGoogle Scholar
  73. Schuur EA, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM (2015) Climate change and the permafrost carbon feedback. Nature 520:171CrossRefGoogle Scholar
  74. Scholz M, Lee BH (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447CrossRefGoogle Scholar
  75. Shepherd D, Burgess D, Jickells T, Andrew JS, Cave R, Turner RK, Aldridge J, Parker ER, Young E (2007) Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary, UK. Estuar Coast Shelf Sci 73:355–367CrossRefGoogle Scholar
  76. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117CrossRefGoogle Scholar
  77. Tiner RW (2005) In search of swampland: a wetland sourcebook and field guide. Rutgers University Press, New BrunswickGoogle Scholar
  78. Torres-Alvarado R, Ramírez-Vives F, Fernández FJ, Barriga-Sosa I (2017) Methanogenesis and methane oxidation in wetlands, implications in the global carbon cycle. Hydrobiologia 15:327–349Google Scholar
  79. Turcq B, Albuquerque ALS, Cordeiro RC, Sifeddine A, Simoes Filho FFL, Souza AG, Abrão JJ, Oliveira FBL, Silva AO, Capitâneo J (2002) Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sediment Geol 148:319–342CrossRefGoogle Scholar
  80. Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197CrossRefGoogle Scholar
  81. Turner RK, Van Den Bergh JC, Söderqvist T, Barendregt A, Van Der Straaten J, Maltby E, Van Ierland EC (2000) Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecol Econ 35:7–23CrossRefGoogle Scholar
  82. Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699CrossRefGoogle Scholar
  83. Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management, Springer, Singapore, pp 423–435Google Scholar
  84. USEPA (2000) National water quality inventory: 2000 report. Office of Water, Washington, DCGoogle Scholar
  85. Van Dam RA, Camilleri C, Finlayson CM (1998) The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review. Environ Toxicol Water Qual 13:297–312CrossRefGoogle Scholar
  86. Vespraskar MJ, Craft CB (2016) Genesis, hydrology, landscapes and classification. Wetland soils. p 508Google Scholar
  87. Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549CrossRefGoogle Scholar
  88. Wan Maznah WO, Mansor M (2000) Periphytic algal composition in Pinang River basin, a case study on one of the most polluted rivers in Malaysia. J Biosci 11(1 & 2):53–67Google Scholar
  89. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94CrossRefGoogle Scholar
  90. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: The prokaryotes. Springer, New York, pp 165–207CrossRefGoogle Scholar
  91. Wolf H, Wagner F, Wichert T, Isolde Collaboration (2005) Anomalous diffusion profiles of Ag in CdTe due to chemical self-diffusion. Phys Rev Lett 94:125901CrossRefGoogle Scholar
  92. Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601CrossRefGoogle Scholar
  93. Xue B, Yan C, Lu H, Bai Y (2009) Mangrove-derived organic carbon in sediment from Zhanjiang Estuary (China) mangrove wetland. J Coast Res 25:949–956CrossRefGoogle Scholar
  94. Yurova AY, Lankreijer H (2007) Carbon storage in the organic layers of boreal forest soils under various moisture conditions: a model study for Northern Sweden sites. Ecol Model 204:475–484CrossRefGoogle Scholar
  95. Yvon-Durocher G, Allen AP, Bastviken D (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nisha Yadav
    • 1
  • D. P. Singh
    • 1
  1. 1.Department of Environmental ScienceBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia

Personalised recommendations