Advertisement

Abstract

Along with the rapid consumption of exhaustible nonrenewable petroleum energy resources and high emission of green gas, the plug-in electric vehicles (PEVs) achieve a high-speed development. These vehicles may reduce consumption of petroleum resources and may reduce pollutant emissions including greenhouse gases. However the improper or disordered charging behaviors of high-penetration PEVs may have significant negative impacts on power grid, like more investments on grid system, higher energy costs and increased peak load etc, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. For example, if a large number of PEVs began charging around the time most people finish their evening commute, a new demand peak could result, possibly requiring substantial new generation capacity and ramping capability [9].

References

  1. 1.
    P. Denholm, W. Short, An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles. Technical Report NREL/TP-620-40293 (National Renewable Energy Laboratory, 2006)Google Scholar
  2. 2.
    S. Rahman, G.B. Shrestha, An investigation into the impact of electric vehicle load on the electric utility distribution system. IEEE Trans. Power Deliv. 8(2), 591–597 (1993)CrossRefGoogle Scholar
  3. 3.
    F. Koyanagi, Y. Uriu, Modeling power consumption by electric vehicles and its impact on power demand. Electr. Eng. Jpn. 120(4), 40–47 (1997)CrossRefGoogle Scholar
  4. 4.
    F. Koyanagi, T. Inuzuka, Y. Uriu, R. Yokoyama, Monte Carlo simulation on the demand impact by quick chargers for electric vehicles, in IEEE Power Engineering Society Summer Meeting, vol. 2, Istanbul, Turkey, 18–22 July 1999, pp. 1031–1036Google Scholar
  5. 5.
    X. Yu, Impact assessment of PHEV charge profiles on generation expansion using energy modeling system, in IEEE Power and Energy Society General Meeting, Pittsburgh, PA (2008)Google Scholar
  6. 6.
    S.W. Hadley, A. Tsvetkova, Potential impacts of plug-in hybrid electric vehicles on regional power generation. Technical Report ORNL/TM-2007/150 (ORNL, 2008)Google Scholar
  7. 7.
    L. Fernandez, T. Roman, R. Cossent, C. Domingo, Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans. Power Syst 26(1), 206–213 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Maitra, J. Taylor, D. Brooks, M. Alexander, M. Duvall, Integrating plug-in-electric vehicles with the distribution system, in 20th International Conference and Exhibition on Electricity Distribution – Part 1, 8–11 June 2009Google Scholar
  9. 9.
    D.M. Lemoine, D.M. Kammen, A.E. Farrell, An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles. Environ. Res. Lett. 3, 014003 (2008)CrossRefGoogle Scholar
  10. 10.
    D. Vallejo, J. Albusac, C. Glez-Morcillo, J.J. Castro-Schez, L. Jimenez, A multi-agent approach to intelligent monitoring in smart grids. Int. J. Syst. Sci. (2013).  https://doi.org/10.1080/00207721.2013.783644
  11. 11.
    L. Kelly, A. Rowe, P. Wild, Analyzing the impacts of plug-in electric vehicles on distribution networks in british columbia, in Electrical Power & Energy Conference (2010)Google Scholar
  12. 12.
    E. Ungar, K. Fell, Plug in, turn on, and load up. IEEE Power Energy Mag. 8(3), 33–35 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Wang, Potential impacts of plug-in hybrid electric vehicles on locational marginal prices, in IEEE Energy 2030, Atlanta, Georgia, 17–18 November 2008Google Scholar
  14. 14.
    P. Richardson, D. Flynn, A. Keane, Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems, in IEEE Power and Energy Society General Meeting (2010), pp. 1–6Google Scholar
  15. 15.
    M. Kintner-Meyer, K. Schneider, R. Pratt, Impacts assessment of plug-in hybrid vehicles on electric utilities and regional US power grids, part 1: Technical analysis. Technical Report (Pacific Northwest National Laboratory, 2007)Google Scholar
  16. 16.
    S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation energy data book. Technical Report ORNL-6985 (Oak Ridge National Laboratory, 2010)Google Scholar
  17. 17.
    F. Koyanagi, T. Inuzuka, Y. Uriu, R. Yokoyama, Monte Carlo simulation on the demand impact by quick chargers for electric vehicles, in Proceedings of the IEEE Power Engineering Society Summer Meeting, vol. 2 (1999), pp. 1031–1036Google Scholar
  18. 18.
    D.S. Callaway, I.A. Hiskens, Achieving controllability of electric loads. Proc. IEEE 99(1), 184–199 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Vaya, G. Andersson, Centralized and decentralized approaches to smart charging of plug-in vehicles, in 2012 IEEE Power and Energy Society General Meeting (2012), pp. 1–8Google Scholar
  20. 20.
    C. Ahn, C.-T. Li, H. Peng, Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid. J. Power Sources 196, 10369–10379 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Gan, U. Topcu, S.H. Low, Stochastic distributed protocol for electric vehicle charging with discrete charging rate, in IEEE Power & Energy Society General Meeting (2012), pp. 1–8Google Scholar
  22. 22.
    Y. Ota, H. Taniguchi, Autonomous distributed v2g (vehicle-to-grid) satisfying scheduled charging. IEEE Trans. Smart Grid 3(1), 559–564 (2012)CrossRefGoogle Scholar
  23. 23.
    W. Kempton, J. Tomic, Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J. Power Sources 144(1), 268–279 (2005)CrossRefGoogle Scholar
  24. 24.
    W. Kempton, J. Tomic, Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 144(1), 280–294 (2005)CrossRefGoogle Scholar
  25. 25.
    M.D. Galus, M. Zima, G. Andersson, On integration of plug-in hybrid electric vehicles into existing power system structures. Energy Policy 38(11), 6736–6745 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Lund, W. Kempton, Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36, 3578–3587 (2008)CrossRefGoogle Scholar
  27. 27.
    S.L. Andersson, A.K. Elofsson, M.D. Galus, L. Göoransson, S. Karlsson, F. Johnsson, G. Andersson, Plug-in hybrid electric vehicles as regulating power providers: case studies of sweden and germany. Energy policy 38(6), 2751–2762 (2010)CrossRefGoogle Scholar
  28. 28.
    J.R. Pillai, B. Bak-Jensen, Integration of vehicle-to-grid in the western Danish power system. IEEE Trans. Sustain. Energy 2(1), 12–19 (2011)Google Scholar
  29. 29.
    C.D. White, K.M. Zhang, Using vehicle-to-grid technology for frequency regulation and peak-load reduction. J. Power Sources 196(8), 3972–3980 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Mitra, G.K. Venayagamoorthy, Wide area control for improving stability of a power system with plug-in electric vehicles. IET Gener. Transm. Distrib. 4(10), 1151–1163 (2010)CrossRefGoogle Scholar
  31. 31.
    O. Sundstrom, C. Binding, Planning electric-drive vehicle charging under constrained grid conditions. Technical Report (IBM - Zurich, Switzerland, 2010)Google Scholar
  32. 32.
    K. Clement-Nyns, E. Haesen, J. Driesen, The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 25(1), 371–380 (2010)CrossRefGoogle Scholar
  33. 33.
    R. Hermans, M. Almassalkhi, I.A. Hiskens, Incentive-based coordinated charging control of plug-in electric vehicles at the distribution-transformer level, in American Control Conference (ACC), Montreal, Canada (2012), pp. 264–269Google Scholar
  34. 34.
    M.D. Galus, G. Andersson, Demand management of grid connected plug-in hybrid electric vehicles (PHEV), in IEEE Energy 2030, Atlanta, Georgia, 17–18 November 2008Google Scholar
  35. 35.
    N. Rotering, M. Ilic, Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. IEEE Trans. Power Syst. 26(3), 1021–1029 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Cha, T. Reen, N. Hah, Optimal charging strategies of electric vehicles in the UK power market, in The first Conference on Innovative Smart Grid Technologies, Gaithersburg, Maryland, 19–21 January 2010, pp. 1–8Google Scholar
  37. 37.
    Z. Ma, D.S. Callaway, I.A. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Gan, U. Topcu, S. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)CrossRefGoogle Scholar
  39. 39.
    Q. Li, T. Cui, R. Negi, F. Franchetti, M. Ilic, On-line decentralized charging of plug-in electric vehicles in power systems. Technical Report arXiv:1106.5063v2 [math.OC], 2011
  40. 40.
    S. Stüdli, E. Crisostomi, R. Middleton, R. Shorten, A flexible distributed framework for realising electric and plug-in hybrid vehicle charging policies. Int. J. Control. 85(8), 1130–1145 (2012)zbMATHCrossRefGoogle Scholar
  41. 41.
    D. Wu, D. Aliprantis, L. Ying, Load scheduling and dispatch for aggregators of plug-in electric vehicles. IEEE Trans. Smart Grid 3(1), 368–376 (2012)CrossRefGoogle Scholar
  42. 42.
    G. Binetti, A. Davoudi, D. Naso, B. Turchiano, F.L. Lewis, Scalable real-time electric vehicles charging with discrete charging rates. IEEE Trans. Smart Grid 6(5), 2211–2220 (2015)CrossRefGoogle Scholar
  43. 43.
    C.K. Wen, J.C. Chen, J.H. Teng, P. Ting, Decentralized plug-in electric vehicle charging selection algorithm in power systems. IEEE Trans. Smart Grid 3(4), 1779–1789 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Ahn, C.-T. Li, H. Peng, Optimal decentralized charging algorithm for electrified vehicles connected to smart grid. J. Power Sources 196(23), 10369–10379 (2011)CrossRefGoogle Scholar
  45. 45.
    Z. Ma, S. Zou, L. Ran, X. Shi, I. Hiskens, Efficient decentralized coordination of large-scale plug-in electric vehicle charging. Automatica 69, 35–47 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    A.-H. Mohsenian-Rad, A. Leon-Garcia, Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)CrossRefGoogle Scholar
  47. 47.
    P. Samadi, A. Mohsenian-Rad, R. Schober, V. Wong, J. Jatskevich, Optimal real-time pricing algorithm based on utility maximization for smart grid, in Proceedings of 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, 4–6 October 2010Google Scholar
  48. 48.
    Z. Fan, A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid 3(3), 1280–1290 (2012)CrossRefGoogle Scholar
  49. 49.
    L. Gan, N. Chen, A. Wierman, U. Topcu, S.H. Low, Real-time deferrable load control: handling the uncertainties of renewable generation, in Fourth International Conference on Future Energy Systems (ACM, 2013)Google Scholar
  50. 50.
    D. Monderer, L.S. Shapley, Potential games. Games Econ. Behav. 14, 124–143 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    E. Altman, T. Başar, T. Jiménez, N. Shimkin, Routing into two parallel links: game-theoretic distributed algorithms. J. Parallel Distrib. Comput. 61(9), 1367–1381 (2001)zbMATHCrossRefGoogle Scholar
  52. 52.
    E. Altman, T. Boulogne, R. El-Azouzi, T. Jimenez, L. Wynter, A survey on networking games in telecommunications. Comput. Oper. Res. 33, 286–311 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    G. Christodoulou, V. Mirrokni, A. Sidiropoulos, Convergence and approximation in potential games, in Proceedings of the 23rd Symposium on Theoretical Aspects of Computer Science (STACS) (2006), pp. 349–360Google Scholar
  54. 54.
    E. Even-Dar, A. Kesselman, Y. Mansour, Convergence time to Nash equilibirum in load balancing. ACM Trans. Comput. Log. 2(3), 111–132 (2001)zbMATHGoogle Scholar
  55. 55.
    P. Berenbrink, T. Friedetzky, L. Goldberg, P. Goldberg, Z. Hu, R. Martin, Distributed selfish load balancing, in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, Miami, Florida, 22–26 January 2006, pp. 354–363Google Scholar
  56. 56.
    A. Blum, E. Even-Dar, K. Ligett, Routing without regret: On convergence to Nash equilibria of regret-minimizing algorithms in routing games, in Proceedings of the 25th ACM Symposium on Principles of Distributed Computing (2006), pp. 45–52Google Scholar
  57. 57.
    S. Fischer, L. Olbrich, B. Vocking, Approximating Wardrop equilibria with finitely many agents. Distrib. Comput. 21(2), 129–139 (2008)zbMATHCrossRefGoogle Scholar
  58. 58.
    S. Fischer, H. Racke, B. Vocking, Fast convergence to Wardrop equilibria by adaptive sampling methods, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, 21–23 May 2006, pp. 653–662Google Scholar
  59. 59.
    J.G. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng., Part 2, pages 1: 325–378 (1952)Google Scholar
  60. 60.
    S. Chien, A. Sinclair, Convergence to approximate Nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    W. Sandholm, Potential games with continuous player sets. J. Econ. Theory 97, 81–108 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    S. Borenstein, J.B. Bushnell, F.A. Wolak, Measuring market inefficiencies in California’s restructured wholesale electricity market. Am. Econ. Rev. 92(5), 1376–1405 (2002)CrossRefGoogle Scholar
  63. 63.
    J.B. Bushnell, E.T. Mansur, C. Saravia, Vertical arrangements, market structure, and competition: an analysis of restructured US electricity markets. Am. Econ. Rev. 98(1), 237–266 (2008)CrossRefGoogle Scholar
  64. 64.
    B.E. Hobbs, Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets. IEEE Trans. Power Syst. 16(2), 194–202 (2002)CrossRefGoogle Scholar
  65. 65.
    L.B. Cunningham, R. Baldick, M.L. Baughman, An empirical study of applied game theory: transmission constrained Cournot behavior. IEEE Trans. Power Syst. 17(1), 166–172 (2002)CrossRefGoogle Scholar
  66. 66.
    E. Pettersen, Managing end-user flexibility in electricity markets (Fakultet for samfunnsvitenskap og teknologiledelse, Institutt for industriell økonomi og teknologiledelse, NTNU, 2004)Google Scholar
  67. 67.
    A.B. Philpott, E. Pettersen, Optimizing demand-side bids in day-ahead electricity markets. IEEE Trans. Power Syst. 21(2), 488–498 (2006)CrossRefGoogle Scholar
  68. 68.
    M. Huang, P.E. Caines, R.P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and nash equilibrium solutions, in Proceedings of the 42th IEEE International Conference on Decision and Control, Maui, Hawaii (2003), pp. 98–103Google Scholar
  69. 69.
    M. Huang, P.E. Caines, R.P. Malhamé, Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized epsilon-nash equilibria. IEEE Trans. Autom. Control. 52(9), 1560–1571 (2007)zbMATHCrossRefGoogle Scholar
  70. 70.
    S. Bashash, S.J. Moura, J.C. Forman, H.K. Fathy, Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity. J. Power Sources 196, 541–549 (2011)CrossRefGoogle Scholar
  71. 71.
    J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, Cycle-life model for graphite-LiFePO4 cells. J. Power Sources 194(8), 3942–3948 (2011)CrossRefGoogle Scholar
  72. 72.
    B.Y. Liaw, R.G. Jungst, G. Nagasubramanian, H.L. Case, D.H. Doughty, Modeling capacity fade in lithium-ion cells. J. Power Sources 140(1), 157–161 (2005)CrossRefGoogle Scholar
  73. 73.
    S. Santhanagopalan, Q. Guo, P. Ramadass, R.E. White, Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 156(2), 620–628 (2006)CrossRefGoogle Scholar
  74. 74.
    M. Safari, M. Morcrette, A. Teyssot, C. Delacourt, Multimodal physics-based aging model for life prediction of Li-ion batteries. J. Electrochem. Soc. 156(3), A145–A153 (2009)CrossRefGoogle Scholar
  75. 75.
    J. Christensen, J. Newman, Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006)CrossRefGoogle Scholar
  76. 76.
    G. Ning, R.E. White, B.N. Popov, A generalized cycle life model of rechargeable Li-ion batteries. Electrochim. Acta 51(10), 2012–2022 (2006)CrossRefGoogle Scholar
  77. 77.
    J.C. Forman, S.J. Moura, J.L. Stein, H.K. Fathy, Optimal experimental design for modeling battery degradation, in ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, Fort Lauderdale, Florida, USA, 17–19 October 2012, pp. 309–318Google Scholar
  78. 78.
    K.W.E. Cheng, B.P. Divakar, H. Wu, K. Ding, H.F. Ho, Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 60(1), 76–88 (2011)CrossRefGoogle Scholar
  79. 79.
    Z. Li, Q. Guo, H. Sun, S. Xin, J. Wang, A new real-time smart-charging method considering expected electric vehicle fleet connections. IEEE Trans. Power Syst. pp(99), 1–2 (2014)Google Scholar
  80. 80.
    S. Wang, L. Han, D. Wang, M. Shahidehpour, Z. Li, Hierarchical charging management strategy of plug-in hybrid electric vehicles to provide regulation service, in 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe) (IEEE, Berlin, 2012), pp. 1–6Google Scholar
  81. 81.
    W. Qi, Z. Xu, Z.J.M. Shen, Z. Hu, Y. Song, Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings. IEEE Trans. Smart Grid 5(3), 1465–1474 (2014)CrossRefGoogle Scholar
  82. 82.
    W. Yao, J. Zhao, F. Wen, Y. Xue, G. Ledwich, A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles. IEEE Trans. Power Syst. 28(3), 2768–2778 (2013)CrossRefGoogle Scholar
  83. 83.
    W. Tang, R. Jain, Hierarchical auction mechanisms for network resource allocation. IEEE J. Sel. Areas Commun. 30(11), 2117–2125 (2012)CrossRefGoogle Scholar
  84. 84.
    F. Kelly, A. Maulloo, D. Tan, Rate control for communication networks: Shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)zbMATHCrossRefGoogle Scholar
  85. 85.
    Y. Ma, T. Houghton, A. Cruden, D. Infield, Modeling the benefits of vehicle-to-grid technology to a power system. IEEE Trans. Power Syst. 27(2), 1012–1020 (2012)CrossRefGoogle Scholar
  86. 86.
    M. Zeng, S. Leng, Y. Zhang, Power charging and discharging scheduling for V2G networks in the smart grid, in IEEE International Conference on Communications Workshops, Budapest, 9–13 June 2013, pp. 1052–1056Google Scholar
  87. 87.
    J. Lin, K.C. Leung, V.O.K. Li, Optimal scheduling with vehicle-to-grid regulation service. IEEE Internet Things J. 1(6), 556–569 (2014)CrossRefGoogle Scholar
  88. 88.
    H. Liang, B.J. Choi, W. Zhuang, X. Shen, Optimizing the energy delivery via V2G systems based on stochastic inventory theory. IEEE Trans. Smart Grid 4(4), 2230–2243 (2013)CrossRefGoogle Scholar
  89. 89.
    M. Esmaili, M. Rajabi, Optimal charging of plug-in electric vehicles observing power grid constraints. IET Gener. Transm. Distrib. 8(4), 583–590 (2014)CrossRefGoogle Scholar
  90. 90.
    S. Falahati, S.A. Taher, M. Shahidehpour, Grid frequency control with electric vehicles by using of an optimized fuzzy controller. Appl. Energy 178, 918–928 (2016)CrossRefGoogle Scholar
  91. 91.
    T.N. Pham, H. Trinh, V.H. Le, Load frequency control of power systems with electric vehicles and diverse transmission links using distributed functional observers. IEEE Trans. Smart Grid 7(1), 238–252 (2016)CrossRefGoogle Scholar
  92. 92.
    X. DaQian, G. Joós, M. Lévesque, M. Maier, Integrated V2G, G2V, and renewable energy sources coordination over a converged fiber-wireless broadband access network. IEEE Trans. Smart Grid 4(3), 1381–1390 (2013)CrossRefGoogle Scholar
  93. 93.
    L. Igualada, C. Corchero, M. Cruz-Zambrano, F.-J. Heredia, Optimal energy management for a residential microgrid including a vehicle-to-grid system. IEEE Trans. Smart Grid 5(4), 2163–2172 (2014)CrossRefGoogle Scholar
  94. 94.
    Y. He, B. Venkatesh, L. Guan, Optimal scheduling for charging and discharging of electric vehicles. IEEE Trans. Smart Grid 3(3), 1095–1105 (2012)CrossRefGoogle Scholar
  95. 95.
    K. Clement-Nyns, E. Haesen, J. Driesen, The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 81(1), 185–192 (2011)CrossRefGoogle Scholar
  96. 96.
    K.N. Kumar, B. Sivaneasan, P.H. Cheah, P.L. So, V2G capacity estimation using dynamic EV scheduling. IEEE Trans. Smart Grid 5(2), 1051–1060 (2014)CrossRefGoogle Scholar
  97. 97.
    L. Jian, Y. Zheng, X. Xiao, C.C. Chan, Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid. Appl. Energy 146, 150–161 (2015)CrossRefGoogle Scholar
  98. 98.
    H. Zhang, H. Zechun, X. Zhiwei, Y. Song, Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model. IEEE Trans. Power Syst. 32(1), 784–794 (2017)CrossRefGoogle Scholar
  99. 99.
    Z. Ma, S. Zou, X. Liu, A distributed charging coordination for large-scale plug-in electric vehicles considering battery degradation cost. IEEE Trans. Control. Syst. Technol. 23(5), 2044–2052 (2015)CrossRefGoogle Scholar
  100. 100.
    S. Zou, Z. Ma, X. Liu, I. Hiskens, An efficient game for coordinating electric vehicle charging. IEEE Trans. Autom. Control. 62(5), 2374–2389 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    M.A. Ortega-Vazquez, Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty. IET Gener. Transm. Distrib. 8(6), 1007–1016 (2014)CrossRefGoogle Scholar
  102. 102.
    D.T. Hoang, P. Wang, D. Niyato, E. Hossain, Charging and discharging of plug-in electric vehicles (PEVs) in vehicle-to-grid (V2G) systems: a cyber insurance-based model. IEEE Access 5, 732–754 (2017)CrossRefGoogle Scholar
  103. 103.
    Z. Chen, Z. Hu, Optimal coordination of charging and discharging control of large-scale plug-in electric vehicles, in Transportation Electrification Asia-Pacific (2014), pp. 1–6Google Scholar
  104. 104.
    H. Xing, F. Minyue, Z. Lin, Y. Mou, Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids. IEEE Trans. Power Syst. 31(5), 4118–4127 (2016)CrossRefGoogle Scholar
  105. 105.
    H. Li, Z. Ma, A distributed charging and discharging coordination for large-population plug-in electric vehicles, in Proceedings of the 2015 Chinese Intelligent Systems Conference, 8 November 2016, pp. 415–424Google Scholar
  106. 106.
    J. Wang, S. Kennedy, J. Kirtley, A new wholesale bidding mechanism for enhanced demand response in smart grids, in Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, 19–21 January 2010, pp. 1–8Google Scholar
  107. 107.
    M. Parvania, M. Fotuhi-Firuzabad, M. Shahidehpour, Optimal demand response aggregation in wholesale electricity markets. IEEE Trans. Smart Grid 4(4), 1957–1965 (2013)CrossRefGoogle Scholar
  108. 108.
    L. Goel, Q. Wu, P. Wang, Y. Ding, Reliability enhancement of deregulated power systems considering demand-price elasticity, in 7th IEEE International Power Engineering Conference (IPEC) (2005), pp. 934–938Google Scholar
  109. 109.
    R. Walawalkar, S. Fernands, N. Thakur, K.R. Chevva, Evolution and current status of demand response (DR) in electricity markets: Insights from PJM and NYISO. Energy 35(4), 1553–1560 (2010)CrossRefGoogle Scholar
  110. 110.
    H.A. Aalami, M.P. Moghaddam, G.R. Yousefi, Demand response modeling considering interruptible/curtailable loads and capacity market programs. Appl. Energy 87(1), 243–250 (2010)CrossRefGoogle Scholar
  111. 111.
    G. Liu, K. Tomsovic, A full demand response model in co-optimized energy and reservemarket. Electr. Power Syst. Res. 111, 62–70 (2014)CrossRefGoogle Scholar
  112. 112.
    M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets. Electr. Power Syst. Res. 78(11), 1989–1996 (2008)CrossRefGoogle Scholar
  113. 113.
    J. Aghaei, M.I. Alizadeh, Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)CrossRefGoogle Scholar
  114. 114.
    R. Rajaraman, J.V. Sarlashkar, F.L. Alvarado, The effect of demand elasticity on security prices for the poolco and multi-lateral contract models. IEEE Trans. Power Syst. 12(3), 1177–1184 (1997)CrossRefGoogle Scholar
  115. 115.
    M.G. Lijesen, The real-time price elasticity of electricity. Energy Econ. 29(2), 249–258 (2007)CrossRefGoogle Scholar
  116. 116.
    D. Kirschen, G. Strbac, P. Cumperayot, D. de Paiva Mendes, Factoring the elasticity of demand in electricity prices. IEEE Trans. Power Syst. 15(2), 612–617 (2000)CrossRefGoogle Scholar
  117. 117.
    A.K. David and Y.Z. Li. Effect of inter-temporal factors on the real time pricing of electricity. IEEE Trans. Power Syst., 8(1) (1993) (Institute of Electrical and Electronics Engineers)Google Scholar
  118. 118.
    W. Uturbey, A.S. Costa, Optimal power flow with inter-temporal constraints as an aiding tool for demand-side management. IEE Proc.-Gener. Transm. Distrib. 149(1), 37–43 (2002)CrossRefGoogle Scholar
  119. 119.
    P. Faria, Z. Vale, Demand response in electrical energy supply: An optimal real time pricing approach. Energy 36(8), 5374–5384 (2011)CrossRefGoogle Scholar
  120. 120.
    J. Aghaei, M.I. Alizadeh, Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy 55, 1044–1054 (2013)CrossRefGoogle Scholar
  121. 121.
    L. Goel, Q. Wu, P. Wang, Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity. Electr. Power Syst. Res. 78(10), 1655–1663 (2008)CrossRefGoogle Scholar
  122. 122.
    C.L. Su, D. Kirschen, Quantifying the effect of demand response on electricity markets. IEEE Trans. Power Syst. 24(3), 1199–1207 (2009)CrossRefGoogle Scholar
  123. 123.
    A. Khodaei, M. Shahidehpour, S. Bahramirad, SCUC with hourly demand response considering intertemporal load characteristics. IEEE Trans. Smart Grid 2(3), 564–571 (2011)CrossRefGoogle Scholar
  124. 124.
    C. Zhao, J. Wang, J.P. Watson, Y. Guan, Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans. Power Syst. 28(3), 2708–2717 (2013)CrossRefGoogle Scholar
  125. 125.
    M. Ali, J. Jokisalo, K. Siren, M. Lehtonen, Combining the demand response of direct electric space heating and partial thermal storage using LP optimization. Electr. Power Syst. Res. 106, 160–167 (2014)CrossRefGoogle Scholar
  126. 126.
    D. Setlhaolo, X. Xia, J. Zhang, Optimal scheduling of household appliances for demand response. Electr. Power Syst. Res. 116, 24–28 (2014)CrossRefGoogle Scholar
  127. 127.
    N. Gatsis, G.B. Giannakis, Decomposition algorithms for market clearing with large-scale demand response. IEEE Trans. Smart Grid 4(4), 1976–1987 (2013)CrossRefGoogle Scholar
  128. 128.
    J. Medina, N. Muller, I. Roytelman, Demand response and distribution grid operations: Opportunities and challenges. IEEE Trans. Smart Grid 1(2), 193–198 (2010)CrossRefGoogle Scholar
  129. 129.
    P. Samadi, H. Mohsenian-Rad, R. Schober, V.W.S. Wong, Advanced demand side management for the future smart grid using mechanism design. IEEE Trans. Smart Grid 3(3), 1170–1180 (2012)CrossRefGoogle Scholar
  130. 130.
    L. Kelly, A. Rowe, P. Wild, Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia, in IEEE Electrical Power and Energy Conference, Montreal, Canada (2009)Google Scholar
  131. 131.
    O. Beaude, S. Lasaulce, M. Hennebel, J. Daafouz, Minimizing the impact of ev charging on the electricity distribution network, in European Control Conference (2015), pp. 648–653Google Scholar
  132. 132.
    Q. Gong, S. Midlam-Mohler, V. Marano, G. Rizzoni, Study of PEV charging on residential distribution transformer LiFe. IEEE Trans. Smart Grid 3(1), 404–412 (2012)CrossRefGoogle Scholar
  133. 133.
    S. Argade, V. Aravinthan, W. Jewell, Probabilistic modeling of ev charging and its impact on distribution transformer loss of life, in Electric Vehicle Conference (2012)Google Scholar
  134. 134.
    K. Zhan, Z. Hu, Y. Song, Z. Luo, Z. Xu, Long Jia. Coordinated electric vehicle charging strategy for optimal operation of distribution network, in 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe) (2012), pp. 1–6Google Scholar
  135. 135.
    A.S. Masoum, S. Deilami, P.S. Moses, M.A. Masoum, A. Abu-Siada, Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimization considering voltage regulation. IET Gener. Transm. Distrib. 5(8), 877–888 (2011)CrossRefGoogle Scholar
  136. 136.
    M.R. Sarker, M. Ortega-Vazquez, D.S. Kirschen, Optimal coordination and scheduling of demand response via monetary incentives. IEEE Trans. Smart Grid 6(3), 1341–1352 (2015)CrossRefGoogle Scholar
  137. 137.
    B. Yang, J. Li, Q. Han, T. He, Distributed control for charging multiple electric vehicles with overload limitation. IEEE Trans. Parallel Distrib. Syst. 27(12), 3441–3454 (2016)CrossRefGoogle Scholar
  138. 138.
    A. Ghavami, K. Kar, A. Gupta, Decentralized charging of plug-in electric vehicles with distribution feeder overload control. IEEE Trans. Autom. Control. 61(11), 3527–3532 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    O. Ardakanian, C. Rosenberg, S. Keshav, Distributed control of electric vehicle charging, in International Conference on Future Energy Systems (2013), pp. 101–112Google Scholar
  140. 140.
    I. Cvetkovic, T. Thacker, Future home uninterruptible renewable energy system with vehicle-to-grid technology, IEEE Energy Conversion Congress and Exposition, 2009. ECCE 2009 (2009), pp. 2675–2681Google Scholar
  141. 141.
    S. Weckx, R. D’Hulst, B. Claessens, J. Driesensam, Multiagent charging of electric vehicles respecting distribution transformer loading and voltage limits. IEEE Trans. Smart Grid 5(6), 2857–2867 (2014)CrossRefGoogle Scholar
  142. 142.
    M. Liu, P.K. Phanivong, S. Yang, D.S. Callaway, Decentralized charging control of electric vehicles in residential distribution networks. IEEE Trans. Control. Syst. Technol. 27(1), 266–281 (2019)CrossRefGoogle Scholar
  143. 143.
    Q.R. Hamid, J.A. Barria, Distributed recharging rate control for energy demand management of electric vehicles. IEEE Trans. Power Syst. 28(3), 2688–2699 (2013)CrossRefGoogle Scholar
  144. 144.
    M. Erol-Kantarci, H. Mouftah, Management of PHEV batteries in the smart grid: Towards a cyber-physical power infrastructure, in 7th International Wireless Communications and Mobile Computing Conference (IWCMC), (2011), pp. 795–800Google Scholar
  145. 145.
    C. Wu, H. Mohsenian-Rad, J. Huang, Vehicle-to-aggregator interaction game. IEEE Trans. Smart Grid 3(1), 434–442 (2012)CrossRefGoogle Scholar
  146. 146.
    M.H.K. Tushar, C. Assi, M. Maier, M.F. Uddin, Smart microgrids: optimal joint scheduling for electric vehicles and home appliances. IEEE Trans. Smart Grid 5(1), 239–250 (2014)CrossRefGoogle Scholar
  147. 147.
    J. Lin, K.C. Leung, V.O.K. Li, Optimal scheduling with vehicle-to-grid regulation service. IEEE Internet Things J. 1(6), 556–569 (2014)CrossRefGoogle Scholar
  148. 148.
    C. Wu, H. Mohsenian-Rad, J. Huang, Vehicle-to-aggregator interaction game. IEEE Trans. Smart Grid 3(1), 434–442 (2012)CrossRefGoogle Scholar
  149. 149.
    D. Infield, J. Short, C. Home, L. Freris, Potential for domestic dynamic demand-side management in the UK, in IEEE Power Engineering Society General Meeting, 2007 (2007), pp. 1–6Google Scholar
  150. 150.
    S. Jang, Optimal decision on contract size for V2G aggregator regarding frequency regulation, in Optimization of Electrical and Electronic Equipment (OPTIM) (2010), pp. 54–62Google Scholar
  151. 151.
    H. Sekyung, H. Soohee, K. Sezaki, Development of an optimal vehicle-to-grid aggregator for frequency regulation. IEEE Trans. Smart Grid 1(1), 65–72 (2010)CrossRefGoogle Scholar
  152. 152.
    C. Hutson, G. Venayagamoorthy, K. Corzine, Intelligent scheduling of hybrid and electric vehicle storage capacity in a parking lot for profit maximization in grid power transactions, in Energy 2030 Conference, 17–18 November 2008, pp. 1–8Google Scholar
  153. 153.
    M. Baran, F. Wu, Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Deliv. 4(1), 735–743 (1989)CrossRefGoogle Scholar
  154. 154.
    R. Gallego, A. Monticelli, R. Romero, Optimal capacitor placement in radial distribution networks. IEEE Trans. Power Syst. 16(4), 630–637 (2001)CrossRefGoogle Scholar
  155. 155.
    S. Sundhararajan, A. Pahwa, Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans. Power Syst. 9(3), 1499–1507 (1994)CrossRefGoogle Scholar
  156. 156.
    Y.C. Huang, H.T. Yang, C.L. Huang, Solving the capacitor placement problem in a radial distribution system using tabu search approach. IEEE Trans. Power Syst. 11(4), 1868–1873 (1996)MathSciNetCrossRefGoogle Scholar
  157. 157.
    C. Wu, H. Mohsenian-Rad, J. Huang, J. Jatskevich, PEV-based combined frequency and voltage regulation for smart grid, in Innovative Smart Grid Technologies (ISGT) (2012), pp. 1–6Google Scholar
  158. 158.
    A.A. Lazar, N. Semret, The progressive second price auction mechanism for network resource sharing, in 8th International Symposium on Dynamic Games (1998)Google Scholar
  159. 159.
    A.A. Lazar, N. Semret, Design and analysis of the progressive second price auction for network bandwidth sharing. Telecommun. Syst. (1999) (Special issue on Network Economics)Google Scholar
  160. 160.
    W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  161. 161.
    E.H. Clark, Multipart pricing of public goods. Public Choice 11(1), 19–33 (1971)MathSciNetGoogle Scholar
  162. 162.
    T. Groves, Incentives in teams. Econometrica 41(4), 617–631 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    L. Ausubel, P. Cramton, Demand reduction and inefficiency in multi-unit auctions. Working papers, University of Maryland, 2002Google Scholar
  164. 164.
    G. Federico, D. Rahman, Bidding in an electricity pay-as-bid auction. J. Regul. Econ. 24(2), 175–211 (2003)CrossRefGoogle Scholar
  165. 165.
    F. Wen, A.K. David, Optimal bidding strategies and modeling of imperfect information among competitive generators. IEEE Trans. Power Syst. 16(1), 15–21 (2001)CrossRefGoogle Scholar
  166. 166.
    R. Jain, J. Walrand, An efficient nash-implementation mechanism for network resource allocation. Automatica 46, 1276–1283 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    P. Jia, P. Caines, Analysis of decentralized decision processes in competitive markets: quantized single and double-sided auctions, in 49th IEEE Conference on Decision and Control (2010), pp. 237–243Google Scholar
  168. 168.
    P. Jia, P.E. Caines, Analysis of decentralized quantized auctions on cooperative networks. IEEE Trans. Autom. Control. 58(2), 529–534 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    P. Jia, P. Caines, Analysis of quantized double auctions with application to competitive electricity markets. INFOR: Inf. Syst. Oper. Res. 48(4), 239–250 (2010)MathSciNetGoogle Scholar
  170. 170.
    J. Forman, J. Stein, H. Fathy, Optimization of dynamic battery paramter characterization experiments via differential evolution, in American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013, pp. 867–874Google Scholar
  171. 171.
    J. Forman, S. Moura, J. Stein, H. Fathy, Optimal experimental design for modeling battery degradation, in Proceedings of Dynamic Systems and Control Conference (2012), pp. 309–318Google Scholar
  172. 172.
    S. Moura, J. Forman, S. Bashash, J. Stein, H. Fathy, Optimal control of film growth in lithium-ion battery packs via relay switches. IEEE Trans. Ind. Electron. 58(8), 3555–3566 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of AutomationBeijing Institute of TechnologyBeijingChina

Personalised recommendations