Skip to main content

Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity

  • Chapter
  • First Online:
Drug Transporters in Drug Disposition, Effects and Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1141))

Abstract

The kidney plays an important role in maintaining total body homeostasis and eliminating toxic xenobiotics and metabolites. Numerous drugs and their metabolites are ultimately eliminated in the urine. The reabsorption and secretion functions of the nephron are mediated by a variety of transporters located in the basolateral and luminal membranes of the tubular cells. In the past decade, many studies indicated that transporters play important roles in drug pharmacokinetics and demonstrated the impact of renal transporters on the disposition of drugs, drug-drug interactions, and nephrotoxicities. Here, we focus on several important renal transporters and their roles in drug elimination and disposition, drug-induced nephrotoxicities and potential clinical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Nichols D, Brearley C, Eve M (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49:64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ackland SP, Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol 5:2017–2031

    Article  CAS  PubMed  Google Scholar 

  • Aherne G, Piall E, Marks V, Mould G, White W (1978) Prolongation and enhancement of serum methotrexate concentrations by probenecid. Br Med J 1:1097–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aloy B, Tazi I, Bagnis C, Gauthier M, Janus N, Launay-Vacher V et al (2016) Is Tenofovir Alafenamide safer than Tenofovir Disoproxil fumarate for the kidneys? AIDS Rev 18:184–192

    PubMed  Google Scholar 

  • Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y (2007) Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos 35:1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Arlt VM, Ferluga D, Stiborova M, Pfohl-Leszkowicz A, Vukelic M, Ceovic S et al (2002) Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer? Int J Cancer 101:500–502

    Article  CAS  PubMed  Google Scholar 

  • Babu E, Takeda M, Nishida R, Noshiro-Kofuji R, Yoshida M, Ueda S et al (2010) Interactions of human organic anion transporters with aristolochic acids. J Pharmacol Sci 113:192–196

    Article  CAS  PubMed  Google Scholar 

  • Bakhiya N, Arlt VM, Bahn A, Burckhardt G, Phillips DH, Glatt H (2009) Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology 264:74–79

    Article  CAS  PubMed  Google Scholar 

  • Bam R, Yant S, Cihlar T (2014) Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther 19:687–692

    Article  CAS  PubMed  Google Scholar 

  • Baudoux TE, Pozdzik AA, Arlt VM, De Prez EG, Antoine MH, Quellard N et al (2012) Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int 82:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Belz G, Doering W, Munkes R, Matthews J (1983) Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharmacol Ther 33:410–417

    Article  CAS  PubMed  Google Scholar 

  • Blair BG, Larson CA, Safaei R, Howell SB (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin Cancer Res 15:4312–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleyer WA (1977) Methotrexate: clinical pharmacology, current status and therapeutic guidelines. Cancer Treat Rev 4:87–101

    Article  CAS  PubMed  Google Scholar 

  • Brackman DJ, Yee SW, Enogieru OJ, Shaffer C, Ranatunga D, Denny JC, Wei W, Kamatani Y, Kubo M, Roden DM, Jorgenson E, Giacomini KM (2019) Genome-wide association and functional studies reveal novel pharmacological mechanisms for allopurinol. Clin Pharmacol Ther Mar 28. https://doi.org/10.1002/cpt.1439

  • Busch A, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharm 54:342–352

    Article  CAS  Google Scholar 

  • Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R (2017) The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 30:15–27

    Article  PubMed  Google Scholar 

  • Chu X, Bleasby K, Chan G, Nunes I, Evers R (2016) The complexities of interpreting reversible elevated serum creatinine levels in drug development: does a correlation with inhibition of renal transporters exist? Drug Metab Dispos 44:1498–1509

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Bleasby K, Yabut J, Cai X, Chan G, Hafey M et al (2007) Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther 321:673–683

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Galetin A, Zamek-Gliszczynski M, Zhang L, Tweedie D (2018) Dabigatran Etexilate and digoxin: comparison as clinical probe substrates for evaluation of P-gp inhibition. Clin Pharmacol Ther 104:788–792

    Article  PubMed  Google Scholar 

  • Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B et al (2010) Organic cation transporter 2 mediates cisplatin-induced Oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimoch P, Lavelle J, Pollard R, Griffy K, Wong R, Tarnowski T et al (1998) Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 17:227–234

    Article  CAS  PubMed  Google Scholar 

  • Clinical Pharmacology and Biopharmaceutical Review for NDA 207561 from Drugs@FDA (2015) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207561Orig1s000ClinPharmR.pdf

  • Claudino WM, Gibson B, Tse W, Krem M, Grewal J (2016) Methotrexate-associated primary cutaneous CD30-positive cutaneous T-cell lymphoproliferative disorder: a case illustration and a brief review. Am J Blood Res 6:1–5

    PubMed  PubMed Central  Google Scholar 

  • Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR (2017) ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med 10:129–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cundy K, Petty B, Flaherty J, Fisher P, Polis M, Wachsman M et al (1995) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeks D (2017) Lesinurad: a review in Hyperuricaemia of gout. Drugs Aging 34:401–410

    Article  CAS  PubMed  Google Scholar 

  • Ding XS, Liang AH, Wang JH, Xiao YQ, Wu ZL, Li CY et al (2005) Nephrotoxicity of Aristolochia manshuriensis and aristolochic acids in mice. Zhongguo Zhong Yao Za Zhi 30:1019–1022

    PubMed  Google Scholar 

  • DESOXYN, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/005378s035lbl.pdf

  • DEXEDRINE, Prescribing information(2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/017078s052lbl.pdf

  • Dong Z, Yang Y, Arya V, Zhang L (2016) Comparing various in vitro prediction criteria to assess the potential of a new molecular entity (NME) to inhibit OCT2 and MATE transporters in vivo. Clin Pharmacol Ther 99:S94

    Google Scholar 

  • El-Sheikh AA, Morsy MA, Altaher AY (2016) Protective mechanisms of resveratrol against methotrexate-induced renal damage may involve BCRP/ABCG2. Fundam Clin Pharmacol 30:406–418

    Article  CAS  PubMed  Google Scholar 

  • Elsheikh AK, Masereeuw R, Russel FG (2008) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245–255

    Article  CAS  Google Scholar 

  • Fallon JK, Smith PC, Xia CQ, Kim MS (2016) Quantification of four efflux drug transporters in liver and kidney across species using targeted quantitative proteomics by isotope dilution nanoLC-MS/MS. Pharm Res 33:1–9

    Article  CAS  Google Scholar 

  • Fenster P, Hager W, Goodman M (1984) Digoxin-quinidine-spironolactone interaction. Clin Pharmacol Ther 36:70–73

    Article  CAS  PubMed  Google Scholar 

  • Fenster P, Hager W, Perrier D, Powell J, Graves P, Michael U (1982) Digoxin-quinidine interaction in patients with chronic renal failure. Circulation 66:1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402

    Article  CAS  PubMed  Google Scholar 

  • Frei E, 3rd, Blum RH, Pitman SW, Kirkwood JM, Henderson IC, Skarin AT, et al. (1980) High dose methotrexate with leucovorin rescue. Rationale and spectrum of antitumor activity. Am J Med 68:370–376

    Google Scholar 

  • George B, You D, Joy M, Aleksunes L (2017) Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 116:73–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillette M, Shah B, Schafer J, Desimone J (2014) Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV - an alternative viewpoint. Pharmacotherapy 34:e173–e174

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Chowdhary SA, Chalmers LM, Lombardi KM, Chamberlain MC (2006) High-dose methotrexate complicated by acute tubular necrosis. Clinical Practice 3:495

    CAS  Google Scholar 

  • GENVOYA, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207561s023lbl.pdf

  • GLUCOPHAGE, Prescribing information (2018) https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020357s034,021202s018lbl.pdf

  • Hager W, Mayersohn M, Graves P (1981) Digoxin bioavailability during quinidine administration. Clin Pharmacol Ther 30:594–599

    Article  CAS  PubMed  Google Scholar 

  • Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83:866–869

    Article  CAS  PubMed  Google Scholar 

  • Hedman A, Angelin B, Arvidsson A, Beck O, Dahlqvist R, Nilsson B et al (1991) Digoxin-verapamil interaction: reduction of biliary but not renal digoxin clearance in humans. Clin Pharmacol Ther 49:256–262

    Article  CAS  PubMed  Google Scholar 

  • Henderson ES, Adamson RH, Denham C, Oliverio VT (1965) The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res 25:1008–1017

    CAS  PubMed  Google Scholar 

  • Hill G, Cihlar T, Oo C, Ho E, Prior K, Wiltshire H et al (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Lin D, Mendel D, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11:383–393

    CAS  PubMed  Google Scholar 

  • Huls M, Brown CDA, Windass AS, Sayer R, Van Den Heuvel JJMW, Heemskerk S et al (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73:220–225

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 99:14298–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K et al (2010) Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 333:341–350

    Article  CAS  PubMed  Google Scholar 

  • Ivanyuk A, Livio F, Biollaz J, Buclin T (2017) Renal drug transporters and drug interactions. Clin Pharmacokinet 56:825–892

    Article  CAS  PubMed  Google Scholar 

  • Jadot I, Decleves AE, Nortier J, Caron N (2017) An integrated view of Aristolochic acid nephropathy: update of the literature. Int J Mol Sci 18

    Google Scholar 

  • Jaehde U, Sörgel F, Reiter A, Sigl G, Naber K, Schunack W (1995) Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther 58:532–541

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Liu Z, Wang C, Meng Q, Huo X, Liu Q et al (2016) P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 306:27–35

    Article  CAS  PubMed  Google Scholar 

  • Karris M (2017) Short communication: resolution of Tenofovir Disoproxil fumarate induced Fanconi syndrome with switch to Tenofovir Alafenamide fumarate in a HIV-1 and hepatitis B Coinfected patient. AIDS Res Hum Retrovir 33:718–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearney B, Flaherty J, Shah J (2004) Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 43:595–612

    Article  CAS  PubMed  Google Scholar 

  • Klein H, Lang R, Weiss E, Di Segni E, Libhaber C, Guerrero J et al (1982) The influence of verapamil on serum digoxin concentration. Circulation 65:998–1003

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Poonam PAK, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep 20:565–583

    Article  CAS  PubMed  Google Scholar 

  • Landersdorfer C, Kirkpatrick C, Kinzig M, Bulitta J, Holzgrabe U, Jaehde U et al (2010) Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol 69:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LANOXIN, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020405s015lbl.pdf

  • Lebel M, Paone R, Lewis G (1983) Effect of probenecid on the pharmacokinetics of ceftizoxime. J Antimicrob Chemother 12:147–155

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Arya V, Yang X, Volpe D, Zhang L (2017) Evaluation of transporters in drug development: current status and contemporary issues. Adv Drug Deliv Rev 116:100–118

    Article  CAS  PubMed  Google Scholar 

  • Lee W, He G, Eisenberg E, Cihlar T, Swaminathan S, Mulato A et al (2005) Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother 49:1898–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepist E, Zhang X, Hao J, Huang J, Kosaka A, Birkus G et al (2014) Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int 86:350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Jia Y, Wang C, Meng Q, Huo X, Sun H et al (2017) Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. RSC Adv 7:25461–25468

    Article  CAS  Google Scholar 

  • Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E et al (2008) Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol 596:166–172

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T et al (2014) Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci 59:94–103

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T et al (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 17:2127–2135

    Article  CAS  PubMed  Google Scholar 

  • Mathialagan S, Rodrigues A, Feng B (2017) Evaluation of renal transporter inhibition using creatinine as a substrate in vitro to assess the clinical risk of elevated serum creatinine. J Pharm Sci 106:2535–2541

    Article  CAS  PubMed  Google Scholar 

  • Merino G, Jonker JW, Wagenaar E, Pulido MM, Molina AJ, Alvarez AI et al (2005) Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab Dispos 33:614–618

    Article  CAS  PubMed  Google Scholar 

  • Meyer Zu Schwabedissen H, Verstuyft C, Kroemer H, Becquemont L, Kim R (2010) Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol 298:F997–F1005

    Article  CAS  PubMed  Google Scholar 

  • Moellentin D, Picone C, Leadbetter E (2008) Memantine-induced myoclonus and delirium exacerbated by trimethoprim. Ann Pharmacother 42:443–447

    Article  CAS  PubMed  Google Scholar 

  • Morris M, Felmlee M (2008) Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-Hydroxybutyric acid. AAPS J 10:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothobi N, Masters J, Marriott D (2018) Fanconi syndrome due to tenofovir disoproxil fumarate reversed by switching to tenofovir alafenamide fumarate in an HIV-infected patient. Ther Adv Infect Dis 5:91–95

    PubMed  PubMed Central  Google Scholar 

  • Müller F, König J, Hoier E, Mandery K, Fromm M (2013) Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol 86:808–815

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Pontones C, Renner B, Mieth M, Hoier E, Auge D et al (2015) N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction. Eur J Clin Pharmacol 71:85–94

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Weitz D, Derdau V, Sandvoss M, Mertsch K, König J et al (2017) Contribution of MATE1 to renal secretion of the NMDA receptor antagonist Memantine. Mol Pharm 14:2991–2998

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K (2010) Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol 80:1762–1767

    Article  CAS  PubMed  Google Scholar 

  • NAMENDA, Prescribing information (2018) https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021487s025lbl.pdf

  • Ochs H, Bodem G, Greenblatt D (1981) Impairment of digoxin clearance by coadministration of quinidine. J Clin Pharmacol 21:396–400

    Article  CAS  PubMed  Google Scholar 

  • Odlind B, Beermann B, Lindström B (1983) Coupling between renal tubular secretion and effect of bumetanide. Clin Pharmacol Ther 34:805–809

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Giri N, Elmquist WF (2007) Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 35:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Pauline B, Noam Z, Dick P, Ozgür SN, Tibben MM, Beijnen JH et al (2004) Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 64:5804

    Article  Google Scholar 

  • Pedersen K, Christiansen B, Kjaer K, Klitgaard N, Nielsen-Kudsk F (1983a) Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clin Pharmacol Ther 34:8–13

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Christiansen B, Klitgaard N, Nielsen-Kudsk F (1983b) Changes in steady state digoxin pharmacokinetics during quinidine therapy in cardiac patients: influence of plasma quinidine concentration. Acta Pharmacol Toxicol (Copenh) 52:357–363

    Article  CAS  Google Scholar 

  • Pedersen K, Christiansen B, Klitgaard N, Nielsen-Kudsk F (1983c) Effect of quinidine on digoxin bioavailability. Eur J Clin Pharmacol 24:41–47

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Dorph-Pedersen A, Hvidt S, Klitgaard N, Nielsen-Kudsk F (1981) Digoxin-verapamil interaction. Clin Pharmacol Ther 30:311–316

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Dorph-Pedersen A, Hvidt S, Klitgaard N, Pedersen K (1982) The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur J Clin Pharmacol 22:123–127

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y et al (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol 222:105–110

    Article  CAS  PubMed  Google Scholar 

  • Rameis H (1985) Quinidine-digoxin interaction: are the pharmacokinetics of both drugs altered? Int J Clin Pharmacol Ther Toxicol 23:145–153

    CAS  PubMed  Google Scholar 

  • Ray A, Cihlar T, Robinson K, Tong L, Vela J, Fuller M et al (2006) Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 50:3297–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Fordyce M, Hitchcock M (2016) Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antivir Res 125:63–70

    Article  CAS  PubMed  Google Scholar 

  • Reese M, Savina P, Generaux G, Tracey H, Humphreys J, Kanaoka E et al (2013) In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos 41:353–361

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Bates SE (2005) ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 4:187–194

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Johnson B, Wilson J, Ritchie P, Johnson J (1988) Comparative effects of verapamil and isradipine on steady-state digoxin kinetics. Clin Pharmacol Ther 43:668–672

    Article  CAS  PubMed  Google Scholar 

  • Schenck-Gustafsson K, Dahlqvist R (1981) Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br J Clin Pharmacol 11:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serota D, Franch H, Cartwright E (2018) Acute kidney injury in a patient on Tenofovir Alafenamide fumarate after initiation of treatment for hepatitis C virus infection. Open Forum Infect Dis 5:ofy189

    PubMed  PubMed Central  Google Scholar 

  • Shen H, Lai Y, Rodrigues D (2017) Organic anion transporter 2: an enigmatic human solute carrier. Drug Metab Dispos 45:228–236

    Article  CAS  PubMed  Google Scholar 

  • Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP (2007) Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 35:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Gee W, Brater D, Lin E, Benet L (1980) Preliminary evaluation of furosemide-probenecid interaction in humans. J Pharm Sci 69:571–575

    Article  CAS  PubMed  Google Scholar 

  • STRIBILD, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203100s034lbl.pdf

  • Stark AN, Jackson G, Carey PJ, Arfeen S, Proctor SJ (1989) Severe renal toxicity due to intermediate-dose methotrexate. Cancer Chemother Pharmacol 24:243–245

    Article  CAS  PubMed  Google Scholar 

  • Stray K, Bam R, Birkus G, Hao J, Lepist E, Yant S et al (2013) Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother 57:4982–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E et al (2005) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315:337–345

    Article  CAS  PubMed  Google Scholar 

  • Takashima T, Wu C, Takashima-Hirano M, Katayama Y, Wada Y, Suzuki M et al (2013) Evaluation of breast cancer resistance protein function in hepatobiliary and renal excretion using PET with 11C-SC-62807. J Nucl Med 54:267–276

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH et al (2002) Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 302:666–671

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Masuda S, Saito H, Hashimoto Y, Inui K-I (2000) Trans-stimulation effects of folic acid derivatives on methotrexate transport by rat renal organic anion transporter, OAT-K1. J Pharmacol Exp Ther 293:1034–1039

    CAS  PubMed  Google Scholar 

  • Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD (2000) Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J Pharmacol Exp Ther 293:453–459

    CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Katsura T, Inui K (2009) Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol 9:1263–1271

    Article  CAS  Google Scholar 

  • Tatu CA, Orem WH, Finkelman RB, Feder GL (1998) The etiology of Balkan endemic nephropathy: still more questions than answers. Environ Health Perspect 106:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • TIKOSYN, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020931s012s013lbl.pdf

  • Uddin M, Gibson AA, Chen M, Carnes CA (2018) Sparreboom A Identification of MATE1 as a high-affinity carrier of dofetilide. Clin Pharmacol Ther 103:S53

    Google Scholar 

  • Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K (2007) Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 24:811–815

    Article  CAS  PubMed  Google Scholar 

  • VEMLIDY, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208464s007lbl.pdf

  • Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62:5035–5040

    CAS  PubMed  Google Scholar 

  • Volk EL, Schneider E (2003) Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res 63:5538–5543

    CAS  PubMed  Google Scholar 

  • VIREAD, Prescribing information (2019) https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/021356s058,022577s014lbl.pdf

  • VISTIDE, Prescribing Information (1999) https://www.accessdata.fda.gov/drugsatfda_docs/label/1999/020638s003lbl.pdf

  • Vree T, Van Den Biggelaar-Martea M, Verwey-Van Wissen C (1995) Probenecid inhibits the renal clearance of frusemide and its acyl glucuronide. Br J Clin Pharmacol 39:692–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner D, Sager J, Duan H, Isoherranen N, Wang J (2017) Interaction and transport of methamphetamine and its primary metabolites by organic cation and multidrug and toxin extrusion transporters. Drug Metab Dispos 45:770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sweet D (2013) Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J 15:53–69

    Article  CAS  PubMed  Google Scholar 

  • Wen CC, Yee SW, Liang X, Hoffmann TJ, Kvale MN, Banda Y, Jorgenson E, Schaefer C, Risch N, Giacomini KM (2015) Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin Pharmacol Ther 5:518–525

    Article  CAS  Google Scholar 

  • Welling P, Dean S, Selen A, Kendall M, Wise R (1979) Probenecid: an unexplained effect on cephalosporin pharmacology. Br J Clin Pharmacol 8:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A 106:10338–10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue X, Gong LK, Maeda K, Luan Y, Qi XM, Sugiyama Y et al (2011) Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol Pharm 8:2183–2192

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  • Yonezawa A, Inui K (2011) Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 5:563–568

    Article  CAS  Google Scholar 

  • Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319:879–886

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The chapter reflects the views of the authors and should not be construed to represent the views or policies of the FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinning Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X., Han, L. (2019). Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity. In: Liu, X., Pan, G. (eds) Drug Transporters in Drug Disposition, Effects and Toxicity. Advances in Experimental Medicine and Biology, vol 1141. Springer, Singapore. https://doi.org/10.1007/978-981-13-7647-4_7

Download citation

Publish with us

Policies and ethics