Tree Improvement in Red Sanders

  • B. K. Indu
  • R. Kavyashree
  • S. Balasubramanya
  • M. Anuradha


Red sanders (Pterocarpus santalinus) is acclaimed for its fabulous timber character and is highly adored for its red-coloured dye santalin and opulent heartwood. This highly prized endangered and endemic tree lured illicit international trade and is controlled by ruthless mafia. The tree has typically two different qualities which determine their value, one has wavy grain wood texture impregnated with intense scarlet red santalin principles and the other with straight grained texture with relatively light colour. Because of this mixed population of elite and non-elite genotypes, red sanders deserves tree improvement programs for its sustainable utilization. Any tree improvement program can be successful with the availability of information on phenology, reproduction biology, genetic and molecular status and breeding techniques. In this review various methods practiced for improvement, limitations and future scope is discussed.


Red sanders Tree improvement Phenology Santalin Plus tree selection 


  1. Anuradha M, Pullaiah T (1998) Investigations on germination of enhanced axillary branching in Pterocarpus santalinus (red sanders) with special reference to in vitro seed culture. Indian For 124:309–314Google Scholar
  2. Anuradha M, Pullaiah T (1999) Propagation studies of red sanders (Pterocarpus santalinus L. f.) in vitro- an endangered taxon of Andhra Pradesh, India. Taiwania 44(3):311–324Google Scholar
  3. Arif IA, Khan HA, Bahkali AH, Homaidan AA, Farhan AH, Al Sadoon M, Shobrak M (2011) DNA marker technology for wildlife conservation. Saudi J Biol Sci 18(3):219–225. Scholar
  4. Arockiasamy S, Ignacimuthu S, Melchias G (2000) Influences of growth regulators and explants type on in vitro shoot propagation and rooting of red sandal wood (Pterocarpus santalinus L. f.). J Exp Biol 48:1270–1273Google Scholar
  5. Arunkumar AN (2011) Variability studies in Pterocarpus santalinus in different aged plantations of Karnataka. My For 47(4):343–353Google Scholar
  6. Balaraju K, Agastian P, Ignacimuthu S (2011) A rapid in vitro propagation of red sanders (Pterocarpus santalinus L. f.) using shoot tip explants. Acta Physiologeae Plant 33:2501–2510CrossRefGoogle Scholar
  7. Bi WL, Pan C, Hao XY, Cui ZH, Kher MM, Markovic Z, Wang QC, Teixeira da Silva JA (2017) Cryopreservation of grapevine (Vitis spp.) – a review. In Vitro Cell Dev Biol Plant 53:449–460CrossRefGoogle Scholar
  8. Burley J (1987) Application of biotechnology in forestry and rural development. Commonw For Rev 66:357–367Google Scholar
  9. Comstock RE (1977) Quantitative genetics and the design of breeding programs. In: Pollak E, Kempthorne O, Bailey TB (eds) Proceedings of international conference on quantitative genetics. Iowa State University Press, Ames, pp 705–718Google Scholar
  10. Dayanand T, Lohidas T (1988) Studies on development and maturity of red sanders (Pterocarpus santalinus Linn. f.). Indian J For 11:207–208Google Scholar
  11. Jyothi CP, Chandrashekar R, Lakshmi B (2014) Isolation of Pterocarpus santalinus L. f. genomic DNA, for quality check and quantification with reference to Telangana region, Andhra Pradesh, India. Indian J Sci 8:21–24Google Scholar
  12. Kalimuthu K, Lakshmanan KK (1995) Effect of different treatments on pod germination of Pterocarpus species. Indian J For 18:104Google Scholar
  13. Kedharnath S (1984) Forest tree improvement in India. Proc Indian Acad Sci (Plant Sci) 93(3):401–412Google Scholar
  14. Kedharnath S, Rawat (1976) Studies on variation in fibre morphology in wavy grained and straight grained trees of red sanders. Indian For 102(7):441–446Google Scholar
  15. Kher MM, Nataraj M, Teixeira da Silva JA (2016) Micropropagation of Crataeva L. species. Rend Lincei 27:157–167CrossRefGoogle Scholar
  16. Ledig FT (1974) An analysis of methods for the selection of trees from wild stands. For Sci 20:2–16Google Scholar
  17. Lohidas T, Dayanand T (1984) Some distinguishing characteristics between wavy grained and straight grained trees of red sanders. Indian J For 7:69–71Google Scholar
  18. Manoj Kumar M, Reddy M, Nadagoudar B (1998) Application of tissue culture techniques in tree improvement. In: Puri S (ed) Tree improvement – applied research and technology transfer. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 249–261Google Scholar
  19. Naidu CV (2000) Seed scarification requirement in Pterocarpus santalinus Linn. f. J Indian Bot Soc 79:175–178Google Scholar
  20. Naidu CV (2001a) Improvement of seed germination in red sanders (Pterocarpus santalinus Linn. f.) by plant growth regulators. Indian J Plant Physiol 6:205–207Google Scholar
  21. Naidu CV (2001b) Seed pretreatment methods to improve germination in red sanders (Pterocarpus santalinusLinn. f.). Indian J For 24:342–343Google Scholar
  22. Naidu CV, Rajendrudu G (2001) Influence of kinetin and nitrogenous salts on seed germination of red sanders (Pterocarpus santalinus Linn. f.). Seed Sci Technol 29:669–672Google Scholar
  23. Nataraj M, Kher MM, Teixeira da Silva JA (2016) Micropropagation of Clerodendrum L. species: a review. Rend Lincei 27:169–179CrossRefGoogle Scholar
  24. Padmalatha K, Prasad MNV (2007) Morphological and molecular diversity in Pterocarpus santalinus L.f – an endemic and endangered medicinal plant. Med Aromat Plant Sc Biotechnol 1:263–273Google Scholar
  25. Padmalatha K, Prasad MNV (2008) In vitro plant regeneration of Pterocarpus santalinus L.f. (red sanders) – an endangered medicinal plant and important timber tree. Tree For Sci Biotechnol 2(1):1–6Google Scholar
  26. Prakash E, Shavalikhan PS, Srinivasa Rao TJV, Meru ES (2006) Micropropagation of red sanders (Pterocarpus santalinus L.) using nodal explants. J For Res 11(5):329–335CrossRefGoogle Scholar
  27. Puri S (1998) Plus-tree selection as a tool in tree improvement. In: Puri S (ed) Tree improvement – applied research and technology transfer. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 97–105Google Scholar
  28. Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tissue Organ Cult 116:1–15CrossRefGoogle Scholar
  29. Rajeswari V, Paliwal K (2008) In vitro plant regeneration of red sanders (Pterocarpus santalinus L. f.) from cotyledonary nodes. Indian J Biotechnol 7:541–546Google Scholar
  30. Rani JS, Usha R (2013) Development of RAPD and specific SCAR markers for the identification of Pterocarpus santalinus L. J Cell Tissue Res 13(3):3809–3816Google Scholar
  31. Rao SP, Raju AJS (2002) Pollination ecology of the red sanders Pterocarpus santalinus (Fabaceae), an endemic and endangered tree species. Curr Sci 83:1144–1148Google Scholar
  32. Rawat MS, Uniyal DP (1996) Identification of wavy grained red sanders (Pterocarpus santalinus) at nursery stage. Indian For 122:9–12Google Scholar
  33. Reddy KK, Srivasuki KP (1990) Vegetative propagation of red sanders (Pterocarpus santalinus Linn. f.). Indian For 116(7):536–540Google Scholar
  34. Reddy KK, Srivasuki KP (1992) Biotechnological approach for tree improvement in red sanders. Indian For 118:15–20Google Scholar
  35. Sarita S, Bhatnagar SP, Bhojwani SS (1988) Preliminary investigations on micropropagation of leguminous timber tree Pterocarpus santalinus. Phytomorphology 38:41–45Google Scholar
  36. Sita GL, Swamy R (1998) Application of biotechnology in forest trees – clonal multiplication of sandalwood, rosewood, eucalyptus, teak and bamboos by tissue culture in India. In: Puri S (ed) Tree improvement – applied research and technology transfer. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 233–246Google Scholar
  37. Sita GL, Sreenatha KS, Sujata S (1992) Plantlet production from shoot tip cultures of red sandal wood (Pterocarpus santalinus L. f.). Curr Sci 62(7):532–535Google Scholar
  38. Soundararajan V, Joshi SC (2012) Tree improvement. In: Endemic possessions of Eastern Ghats: red sanders (Pterocarpus santalinus Linn. f). Institute of Wood Science and Technology, (ICFRE), Bangalore, pp 23–38Google Scholar
  39. Swamy MK, Anuradha M (2011) Analysis of genetic variability in Patchouli cultivars (Pogostemoncablin Benth.) by using RAPD markers. Res Biotechnol 2(6):64–71Google Scholar
  40. Teixeira da Silva JA, Zeng S, Wicaksono A, Kher MM, Kim H, Hosokawa M, Dewir YH (2017) In vitro propagation of African violet: a review. South Afr J Bot 112:501–507CrossRefGoogle Scholar
  41. Teixeira da Silva JA, Kher MM, Soner D, Nataraj M (2018) Indian Kino tree (Pterocarpus marsupium): propagation, micropropagation and biotechnology. Environ Exp Biol 16:1–8CrossRefGoogle Scholar
  42. Tippani R, Yarra R, Bulle M, Porika M, Abbagani S, Thammidala C (2013) In vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Indian Kino tree (Pterocarpus marsupium Roxb.). Acta Physiologea Plant 35:3437–3446CrossRefGoogle Scholar
  43. Warakagoda P, Subasinghe S (2013) In vitro propagation of Pterocarpus santalinus L. f. (red sandalwood) through tissue culture. J Natl Sci Found Sri Lanka 41(1):53–63CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • B. K. Indu
    • 1
  • R. Kavyashree
    • 2
  • S. Balasubramanya
    • 3
  • M. Anuradha
    • 4
  1. 1.Rishi FoundationBangaloreIndia
  2. 2.Department of BiotechnologyThe Oxford College of ScienceBangaloreIndia
  3. 3.Department of IT, BT and S&T, Government of KarnatakaKarnataka Innovation & Technology SocietyBangaloreIndia
  4. 4.Department of BiotechnologyPadmashree Institute of Management and SciencesBangaloreIndia

Personalised recommendations