Drug Resistance in Cancer and Role of Nanomedicine-Based Natural Products

  • Deeptashree Nandi
  • Aakriti Singal
  • Alo Nag


Cancer is an age-old malady that has claimed millions of lives across the globe and the death toll is ever increasing. Despite intensive research for over a decade, contemporary anticancer treatment regimens still suffer from certain shortcomings, with drug resistance posing as a major hurdle. In this aspect, natural anticancer products have attracted attention as suitable chemopreventive agents over other synthetic compounds. However, the potential application of such natural compounds has been restricted due to their low bioavailability, poor efficacy amongst other limitations. An exciting advancement in the field of medicine has been the advent of nanoparticles that have reformed the usage of natural products as innovative anticancer therapeutics. This chapter elaborates the role of nanoparticle based natural products as potent and efficacious therapeutic agents for treatment and management of cancer.


Nanomedicine Nanoparticle Nanoscience Cancer Natural products Drug resistance Anti-cancer Therapy 


  1. Ahmad J, Akhter S, Greig NH, Kamal MA, Midoux P, Pichon C (2016) Engineered nanoparticles against MDR in cancer: the state of the art and its prospective. Curr Pharm Des 22(28):4360–4373PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact 171(1):89–95PubMedCrossRefGoogle Scholar
  4. Almagro L, Fernández-Pérez F, Pedreño MA (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20(2):2973–3000PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andre MP (2014) Combination chemoradiotherapy in early Hodgkin lymphoma. Hematol Oncol Clin North Am 28(1):33–47PubMedCrossRefGoogle Scholar
  6. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 12(10):1244–1252PubMedPubMedCentralCrossRefGoogle Scholar
  7. Awada A, Garcia AA, Chan S, Jerusalem GH, Coleman RE, Huizing MT et al (2013) Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomised phase 2 study. Lancet Oncol 14(12):1216–1225PubMedCrossRefGoogle Scholar
  8. Awada A, Bondarenko I, Bonneterre J, Nowara E, Ferrero J, Bakshi A et al (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25(4):824–831PubMedCrossRefGoogle Scholar
  9. Balasubramanian J, Narayanan N, Pragadeesh K (2014) Biodegradable PEG nanoparticles for colorectal cancer using irinotecan as anticancer agent. Int J Pharm Pharm Sci 6(4):49–54Google Scholar
  10. Barenholz YC (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRefGoogle Scholar
  11. Basmadjian C, Zhao Q, Bentouhami E, Djehal A, Nebigil CG, Johnson RA et al (2014) Cancer wars: natural products strike back. Front Chem 2:20PubMedPubMedCentralCrossRefGoogle Scholar
  12. Batist G, Gelmon KA, Chi KN, Miller WH, Chia SK, Mayer LD et al (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15(2):692–700PubMedCrossRefGoogle Scholar
  13. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792PubMedCrossRefGoogle Scholar
  14. Bedikian A, DeConti R, Conry R, Agarwala S, Papadopoulos N, Kim K et al (2010) Phase 3 study of docosahexaenoic acid–paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann Oncol 22(4):787–793PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedCrossRefGoogle Scholar
  16. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, pp 33–93Google Scholar
  17. Bhatnagar P, Patnaik S, Srivastava AK, Mudiam MK, Shukla Y, Panda AK et al (2014) Anti-cancer activity of bromelain nanoparticles by oral administration. J Biomed Nanotechnol 10(12):3558–3575PubMedCrossRefGoogle Scholar
  18. Bissett D, Cassidy J, De Bono J, Muirhead F, Main M, Robson L et al (2004) Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br J Cancer 91(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blazquez AG, Fernandez-Dolon M, Sanchez-Vicente L, Maestre AD, Gomez-San Miguel AB, Alvarez M et al (2013) Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem 21(14):4432–4441PubMedCrossRefGoogle Scholar
  20. Borska S, Chmielewska M, Wysocka T, Drag-Zalesinska M, Zabel M, Dziegiel P (2012) In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 50(9):3375–3383PubMedCrossRefGoogle Scholar
  21. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine 12(1):81–103PubMedCrossRefGoogle Scholar
  22. Calvo E, Hoch U, Maslyar D, Tolcher A (2010) Dose-escalation phase I study of NKTR-105, a novel pegylated form of docetaxel. J Clin Oncol 28(Suppl 15):TPS160CrossRefGoogle Scholar
  23. Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):R209–RR25PubMedPubMedCentralCrossRefGoogle Scholar
  24. Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF (2017) Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol 8(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cavalli R, Leone F, Minelli R, Fantozzi R, Dianzani C (2014) New chitosan nanospheres for the delivery of 5-fluorouracil: preparation, characterization and in vitro studies. Curr Drug Deliv 11(2):270–278PubMedCrossRefGoogle Scholar
  26. Chang M, Yang C-S, Huang D-M (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5(8):6156–6163PubMedCrossRefGoogle Scholar
  27. Chen QH (2015) Curcumin-based anti-prostate cancer agents. Anti Cancer Agents Med Chem 15(2):138–156CrossRefGoogle Scholar
  28. Chen G, Teicher BA, Frei E 3rd. (1996) Differential interactions of Pgp inhibitor thaliblastine with adriamycin, etoposide, taxol and anthrapyrazole CI941 in sensitive and multidrug-resistant human MCF-7 breast cancer cells. Anticancer Res 16(6B):3499–3505PubMedGoogle Scholar
  29. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T et al (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug- resistant cancer cells. Small 5(23):2673–2677PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen Y, Zhang W, Gu J, Ren Q, Fan Z, Zhong W et al (2013) Enhanced antitumor efficacy by methotrexate conjugated pluronic mixed micelles against KBv multidrug resistant cancer. Int J Pharm 452(1–2):421–433PubMedCrossRefGoogle Scholar
  31. Chen F, Zhao Y, Pan Y, Xue X, Zhang X, Kumar A et al (2015) Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol Pharm 12(7):2237–2244PubMedCrossRefGoogle Scholar
  32. Chen W, Chen R, Li J, Fu Y, Yang L, Su H et al (2018) Pharmacokinetic/pharmacodynamic modeling of schedule-dependent interaction between docetaxel and cabozantinib in human prostate cancer xenograft models. J Pharmacol Exp Ther 364(1):13–25PubMedCrossRefGoogle Scholar
  33. Clegg A, Scott DA, Hewitson P, Sidhu M, Waugh N (2002) Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax 57(1):20–28PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cormio G, Loizzi V, Gissi F, Camporeale A, De Mitri P, Leone L et al (2011) Long-term topotecan therapy in recurrent or persistent ovarian cancer. Eur J Gynaecol Oncol 32(2):153–155PubMedGoogle Scholar
  35. Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(Suppl 2):41–59CrossRefGoogle Scholar
  36. Cree IA, Charlton P (2017) Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. Biomed Res Int 2012:247597. 2011Google Scholar
  38. Crown J, O’Leary M, Ooi WS (2004) Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9(Suppl 2):24–32PubMedCrossRefGoogle Scholar
  39. Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 67(2):269–272PubMedCrossRefGoogle Scholar
  40. Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13(1):218–228PubMedCrossRefGoogle Scholar
  41. Das M, Sahoo SK (2012) Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One 7(3):e32920PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dasiram JD, Ganesan R, Kannan J, Kotteeswaran V, Sivalingam N (2017) Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother 86:373–380PubMedCrossRefGoogle Scholar
  43. Davis ME (2009) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61(13):1189–1192PubMedCrossRefGoogle Scholar
  44. Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771PubMedCrossRefGoogle Scholar
  45. Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J et al (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633PubMedCrossRefGoogle Scholar
  46. Deguchi A (2015) Curcumin targets in inflammation and cancer. Endocr Metab Immune Disord Drug Targets 15(2):88–96PubMedCrossRefGoogle Scholar
  47. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699PubMedPubMedCentralCrossRefGoogle Scholar
  48. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324PubMedCrossRefGoogle Scholar
  49. Di Martino RMC, Luppi B, Bisi A, Gobbi S, Rampa A, Abruzzo A et al (2017) Recent progress on curcumin-based therapeutics: a patent review (2012–2016). Part I: curcumin. Expert Opin Ther Pat 27(5):579–590PubMedCrossRefGoogle Scholar
  50. Di Pietro A, Dayan G, Conseil G, Steinfels E, Krell T, Trompier D et al (1999) P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships. Braz J Med Biol Res 32(8):925–939PubMedCrossRefGoogle Scholar
  51. Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615PubMedCrossRefGoogle Scholar
  52. Dong X, Wang W, Qu H, Han D, Zheng J, Sun G (2016) Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo. Drug Deliv 23(4):1374–1378PubMedCrossRefGoogle Scholar
  53. Du G-J, Zhang Z, Wen X-D, Yu C, Calway T, Yuan C-S et al (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4(11):1679–1691PubMedPubMedCentralCrossRefGoogle Scholar
  54. Elkhodiry MA, Momah CC, Suwaidi SR, Gadalla D, Martins AM, Vitor RF et al (2016) Synergistic nanomedicine: passive, active, and ultrasound-triggered drug delivery in cancer treatment. J Nanosci Nanotechnol 16(1):1–18PubMedCrossRefGoogle Scholar
  55. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561PubMedPubMedCentralCrossRefGoogle Scholar
  56. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomedicine 9(1):1PubMedCrossRefGoogle Scholar
  57. Evans AE, Farber S, Brunet S, Mariano PJ (1963) Vincristine in the treatment of acute leukemia in children. Cancer 16(10):1302–1306PubMedCrossRefGoogle Scholar
  58. Fornaguera C, García-Celma MJ (2017) Personalized nanomedicine: a revolution at the nanoscale. J Personalized Med 7(4):12CrossRefGoogle Scholar
  59. Fossa SD, Droz JP, Pavone-Macaluso MM, Debruyne FJ, Vermeylen K, Sylvester R (1992) Vinblastine in metastatic renal cell carcinoma: EORTC phase II trial 30882. The EORTC Genitourinary Group. Eur J Cancer 28A(4–5):878–880PubMedCrossRefGoogle Scholar
  60. Frei E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J et al (1965) The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 26(5):642–656PubMedGoogle Scholar
  61. Fuchs C, Mitchell EP, Hoff PM (2006) Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev 32(7):491–503PubMedCrossRefGoogle Scholar
  62. Fumoleau P, Delgado F, Delozier T, Monnier A, Gil Delgado M, Kerbrat P et al (1993) Phase II trial of weekly intravenous vinorelbine in first-line advanced breast cancer chemotherapy. J Clin Oncol 11(7):1245–1252PubMedCrossRefGoogle Scholar
  63. Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N (2015) Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 20(12):1531–1562PubMedCrossRefGoogle Scholar
  64. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798PubMedCrossRefGoogle Scholar
  65. Gao W, Chan JY, Wei WI, Wong TS (2012) Anti-cancer effects of curcumin on head and neck cancers. Anti Cancer Agents Med Chem 12(9):1110–1116CrossRefGoogle Scholar
  66. Gao Z, Li Z, Yan J, Wang P (2017) Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther 11:2595PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gatzemeier U, von Pawel J, Laumen R, Hossfeld DK, Neuhauss R, Reck M et al (1992) Carboplatin/etoposide/vincristine therapy in small cell lung cancer. Oncology 49(Suppl 1):25–33PubMedCrossRefGoogle Scholar
  68. Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X et al (2014) Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine: Nanotechnol, Biol Med 10(7):1477–1486CrossRefGoogle Scholar
  69. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1): 1–9PubMedCrossRefGoogle Scholar
  70. Giaccone G, Pinedo HM (1996) Drug resistance. Oncologist 1(1 & 2):82–87PubMedGoogle Scholar
  71. Gokhale P, Radhakrishnan B, Husain S, Abernethy D, Sacher R, Dritschilo A et al (1996) An improved method of encapsulation of doxorubicin in liposomes: pharmacological, toxicological and therapeutic evaluation. Br J Cancer 74(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627PubMedCrossRefGoogle Scholar
  73. Greenwell M, Rahman PK (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6(10):4103–4112PubMedPubMedCentralGoogle Scholar
  74. Grem JL, Hoth DF, Leyland-Jones B, King S, Ungerleider R, Wittes R (1988) Teniposide in the treatment of leukemia: a case study of conflicting priorities in the development of drugs for fatal diseases. J Clin Oncol 6(2):351–379PubMedCrossRefGoogle Scholar
  75. Group ELCVIS (1999) Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 91(1):66–72CrossRefGoogle Scholar
  76. Gu YJ, Cheng J, Man CW, Wong WT, Cheng SH (2012) Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 8(2):204–211PubMedCrossRefGoogle Scholar
  77. Guilbaud N, Leonce S, Tillequin F, Koch M, Hickman JA, Pierre A (2002) Acronycine derivatives as promising antitumor agents. Anti-Cancer Drugs 13(5):445–449PubMedCrossRefGoogle Scholar
  78. Guo L, Peng Y, Yao J, Sui L, Gu A, Wang J (2010) Anticancer activity and molecular mechanism of resveratrol–Bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in Nude mice. Cancer Biother Radiopharm 25(4):471–477PubMedCrossRefGoogle Scholar
  79. Haris P, Mary V, Aparna P, Dileep K, Sudarsanakumar C (2017) A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 175:155–163PubMedCrossRefGoogle Scholar
  80. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885PubMedCrossRefGoogle Scholar
  81. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726PubMedCrossRefGoogle Scholar
  82. Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA et al (2007) Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 13(19):5855–5861PubMedCrossRefGoogle Scholar
  83. Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M et al (2017) Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol 35(35):3924–3933PubMedPubMedCentralCrossRefGoogle Scholar
  84. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6(3):1769–1792CrossRefGoogle Scholar
  85. Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39–128ra39PubMedCrossRefGoogle Scholar
  86. Jahan ST, Sadat SMA, Walliser M, Haddadi A (2017) Targeted therapeutic nanoparticles: an immense promise to fight against cancer. J Drug Deliv 2017:9090325PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jain KK (2006) Nanoparticles as targeting ligands. Trends Biotechnol 24(4):143–145PubMedCrossRefGoogle Scholar
  88. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220PubMedCrossRefGoogle Scholar
  89. Jin H, Pi J, Zhao Y, Jiang J, Li T, Zeng X et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374PubMedCrossRefGoogle Scholar
  90. Juarez P (2014) Plant-derived anticancer agents: a promising treatment for bone metastasis. Bonekey Rep 3:599PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jung J, Park S-J, Chung HK, Kang H-W, Lee S-W, Seo MH et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84(1):e77–e83PubMedCrossRefGoogle Scholar
  92. Kang KW, Chun M-K, Kim O, Subedi RK, Ahn S-G, Yoon J-H et al (2010) Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine 6(2):210–213PubMedCrossRefGoogle Scholar
  93. Kapse-Mistry S, Govender T, Srivastava R, Yergeri M (2014) Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol 5:159PubMedPubMedCentralGoogle Scholar
  94. Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3(1):64–73CrossRefGoogle Scholar
  95. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T et al (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs 30(4):1621–1627CrossRefGoogle Scholar
  96. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem.
  97. Kipps E, Young K, Starling N (2017) Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. Ther Adv Med Oncol 9(3):159–170PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kluza J, Lansiaux A, Wattez N, Hildebrand MP, Leonce S, Pierre A et al (2002) Induction of apoptosis in HL-60 leukemia and B16 melanoma cells by the acronycine derivative S23906-1. Biochem Pharmacol 63(8):1443–1452PubMedCrossRefGoogle Scholar
  99. Kuo YC, Lee CH (2015) Inhibition against growth of Glioblastoma multiforme in vitro using etoposide- loaded solid lipid nanoparticles with p-Aminophenyl-α-d-Manno-Pyranoside and folic acid. J Pharm Sci 104(5):1804–1814PubMedCrossRefGoogle Scholar
  100. Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta (BBA)-Biomembr 1233(2):134–144CrossRefGoogle Scholar
  101. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250PubMedCrossRefGoogle Scholar
  102. Leung HW, Leung J-H, Chan AL (2018) Efficacy and safety of a combination of HER2-targeted agents as first-line treatment for metastatic HER2-positive breast cancer: a network meta-analysis. Expert Opin Drug Saf 17(1):1–7PubMedCrossRefGoogle Scholar
  103. Li J, Chen Y-C, Tseng Y-C, Mozumdar S, Huang L (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142(3):416–421PubMedCrossRefGoogle Scholar
  104. Li B, Xu H, Li Z, Yao M, Xie M, Shen H et al (2012) Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 7:187PubMedPubMedCentralGoogle Scholar
  105. Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64(9):826–835PubMedCrossRefGoogle Scholar
  106. Liu Y, Zhao G, Xu Y, He X, Li X, Chen H et al (2017) Multicenter phase 2 study of Peri-irradiation chemotherapy plus intensity modulated radiation therapy with concurrent weekly docetaxel for inoperable or medically Unresectable nonmetastatic gastric cancer. Int J Radiat Oncol Biol Phys 98(5):1096–1105PubMedCrossRefGoogle Scholar
  107. Lu HL, Syu WJ, Nishiyama N, Kataoka K, Lai PS (2011) Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Control Release 155(3):458–464PubMedCrossRefGoogle Scholar
  108. Madaan A, Singh P, Awasthi A, Verma R, Singh AT, Jaggi M et al (2013) Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel TM. Clin Transl Oncol 15(1):26–32PubMedCrossRefGoogle Scholar
  109. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mahalingam D, Nemunaitis JJ, Malik L, Sarantopoulos J, Weitman S, Sankhala K et al (2014) Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother Pharmacol 74(6):1241–1250PubMedCrossRefGoogle Scholar
  111. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 9:55PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mallick A, More P, Ghosh S, Chippalkatti R, Chopade BA, Lahiri M et al (2015) Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl Mater Interfaces 7(14):7584–7598PubMedCrossRefGoogle Scholar
  113. Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148PubMedCrossRefGoogle Scholar
  114. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13–14):1866–1879PubMedPubMedCentralCrossRefGoogle Scholar
  115. Matsuzaki T, Takagi A, Furuta T, Ueno S, Kurita A, Nohara G et al (2012) Antitumor activity of IHL-305, a novel pegylated liposome containing irinotecan, in human xenograft models. Oncol Rep 27(1):189–197PubMedGoogle Scholar
  116. Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D et al (2009) A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett 4(12):1530PubMedPubMedCentralCrossRefGoogle Scholar
  117. Meng J, Guo F, Xu H, Liang W, Wang C, Yang X-D (2016) Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 6:22390PubMedPubMedCentralCrossRefGoogle Scholar
  118. Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R et al (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79(2):130–136PubMedCrossRefGoogle Scholar
  119. Miglietta A, Cavalli R, Bocca C, Gabriel L, Gasco MR (2000) Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 210(1–2):61–67PubMedCrossRefGoogle Scholar
  120. Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG et al (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127(3):208–218PubMedCrossRefGoogle Scholar
  121. Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46(10):4769–4807PubMedCrossRefGoogle Scholar
  122. Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCLI J 14:95PubMedPubMedCentralGoogle Scholar
  123. Muggia FM (1994) Teniposide: overview of its therapeutic potential in adult cancers. Cancer Chemother Pharmacol 34(1):S127–SS33PubMedCrossRefGoogle Scholar
  124. Muggia FM, Kelley SL (eds) (1992) Teniposide in adult solid tumors: a historical perspective. Semin Oncol 19:43–50. ElsevierGoogle Scholar
  125. Mughees M, Samim M, Wajid S. (2018) 83P Artemisia absinthium extract loaded polymeric nanoparticles as the therapeutic remedy for breast cancer. Ann Oncol 29(Suppl_3):mdy047. 32Google Scholar
  126. Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29(10):3867–3875PubMedGoogle Scholar
  127. Munir I, Ajmal S, Shah MR, Ahmad A, Hameed A, Ali SA (2017) Protein–drug nanoconjugates: finding the alternative proteins as drug carrier. Int J Biol Macromol 101:131–145PubMedCrossRefGoogle Scholar
  128. Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8PubMedCrossRefGoogle Scholar
  129. Natesan S, Ponnusamy C, Sugumaran A, Chelladurai S, Palaniappan SS, Palanichamy R (2017) Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int J Biol Macromol 104:1853–1859PubMedCrossRefGoogle Scholar
  130. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nguyen H, Zhang S, Morris ME (2003) Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci 92(2):250–257PubMedCrossRefGoogle Scholar
  132. Ozaki Y, Miura Y, Koganemaru S, Suyama K, Inoshita N, Fujii T et al (2015) Ewing sarcoma of the liver with multilocular cystic mass formation: a case report. BMC Cancer 15:16PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R et al (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163PubMedCrossRefGoogle Scholar
  134. Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H et al (2010) A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater 22(42):4754–4758PubMedPubMedCentralCrossRefGoogle Scholar
  135. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY et al (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673PubMedCrossRefGoogle Scholar
  136. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L et al (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10(5):1615–1623PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pianetti S, Guo S, Kavanagh KT, Sonenshein GE (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62(3):652–655PubMedGoogle Scholar
  138. Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1(2):13. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of developmentGoogle Scholar
  139. Pooja D, Kulhari H, Tunki L, Chinde S, Kuncha M, Grover P et al (2015) Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Adv 5(61):49122–49131CrossRefGoogle Scholar
  140. Prakash O, Kumar A, Pawan Kumar A (2013) Anticancer potential of plants and natural products: a. Am J Pharmacol Sci 1(6):104–115Google Scholar
  141. Pramanik D, Campbell NR, Das S, Gupta S, Chenna V, Bisht S et al (2012) A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 3(6):640PubMedPubMedCentralCrossRefGoogle Scholar
  142. Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26(5):958–967PubMedCrossRefGoogle Scholar
  143. Qi R, Wang Y, Bruno PM, Xiao H, Yingjie Y, Li T et al (2017) Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 8(1):2166PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ranjan AP, Mukerjee A, Gdowski A, Helson L, Bouchard A, Majeed M et al (2016) Curcumin-ER prolonged subcutaneous delivery for the treatment of non-small cell lung cancer. J Biomed Nanotechnol 12(4):679–688PubMedCrossRefGoogle Scholar
  145. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS (2018) Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr 58(9):1428–1447PubMedCrossRefGoogle Scholar
  146. Ricci J, Kim M, Chung WY, Park KK, Jung M (2011) Discovery of artemisinin-glycolipid hybrids as anti-oral cancer agents. Chem Pharm Bull (Tokyo) 59(12):1471–1475CrossRefGoogle Scholar
  147. Rodriguez M, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B et al (2009) Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma. Cancer 115(15):3475–3482PubMedCrossRefGoogle Scholar
  148. Ruf S, Hebart H, Hjalgrim LL, Kabickova E, Lang P, Steinbach D et al (2018) CNS progression during vinblastine or targeted therapies for high-risk relapsed ALK-positive anaplastic large cell lymphoma: a case series. Pediatr Blood Cancer 65:e27003. 7PubMedCrossRefGoogle Scholar
  149. Ryu HJ, Seong N-w, So BJ, Seo H-s, Kim J-h, Hong J-S et al (2014) Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int J Nanomedicine 9(Suppl 2):127PubMedPubMedCentralGoogle Scholar
  150. Saad MZH, Jahan R, Bagul U (2012) Nanopharmaceuticals: a new perspective of drug delivery system. Asian J Biomed Pharm Sci 2(14):11Google Scholar
  151. Sabbatini P, Aghajanian C, Dizon D, Anderson S, Dupont J, Brown JV et al (2004) Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J Clin Oncol 22(22):4523–4531PubMedCrossRefGoogle Scholar
  152. Sameer R, Nidhi S, Tarun V, Charan S, Jyoti G (2016) A review on naturally derived compounds for potential anticancer activity. Indian J Drugs 4(3):75–86Google Scholar
  153. Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)–poly (ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10(10):3871–3881PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280PubMedCrossRefGoogle Scholar
  155. Sarris A, Hagemeister F, Romaguera J, Rodriguez M, McLaughlin P, Tsimberidou A et al (2000) Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol 11(1):69–72PubMedCrossRefGoogle Scholar
  156. Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130(31):10258–10262PubMedCrossRefGoogle Scholar
  157. Schwertheim S, Wein F, Lennartz K, Worm K, Schmid KW, Sheu-Grabellus S-Y (2017) Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. J Cancer Res Clin Oncol 143(7):1143–1154PubMedCrossRefPubMedCentralGoogle Scholar
  158. Scott L, Yao J, Benson A, Thomas A, Falk S, Mena R et al (2009) A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma. Cancer Chemother Pharmacol 63(2):363–370PubMedCrossRefGoogle Scholar
  159. Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q et al (2009) Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf B: Biointerfaces 72(1):40–47PubMedCrossRefPubMedCentralGoogle Scholar
  160. Shen J, Yin Q, Chen L, Zhang Z, Li Y (2012) Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33(33):8613–8624PubMedCrossRefPubMedCentralGoogle Scholar
  161. Shenoi MM, Iltis I, Choi J, Koonce NA, Metzger GJ, Griffin RJ et al (2013) Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol Pharm 10(5):1683–1694PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20PubMedCrossRefPubMedCentralGoogle Scholar
  163. Shin YS, Kang SU, Park JK, Kim YE, Kim YS, Baek SJ et al (2016) Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin. Phytomedicine 23(12):1344–1355PubMedCrossRefPubMedCentralGoogle Scholar
  164. Shutava TG, Balkundi SS, Vangala P, Steffan JJ, Bigelow RL, Cardelli JA et al (2009) Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3(7):1877–1885PubMedCrossRefGoogle Scholar
  165. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI et al (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69(5):1712–1716PubMedPubMedCentralCrossRefGoogle Scholar
  166. Singh M, Bhatnagar P, Mishra S, Kumar P, Shukla Y, Gupta KC (2015) PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int J Nanomedicine 10:6789PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sinha N, Yeow JT (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4(2):180–195PubMedCrossRefGoogle Scholar
  168. Slavin YN, Asnis J, Hafeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65CrossRefGoogle Scholar
  169. Slezakova S, Ruda-Kucerova J (2017) Anticancer activity of artemisinin and its derivatives. Anticancer Res 37(11):5995–6003PubMedGoogle Scholar
  170. Slingerland M, Guchelaar H-J, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH et al (2013) Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 35(12):1946–1954PubMedCrossRefGoogle Scholar
  171. Stevigny C, Bailly C, Quetin-Leclercq J (2005) Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents 5(2):173–182PubMedCrossRefGoogle Scholar
  172. Sun Y, Kiang C-H (2005) DNA-based artificial nanostructures: fabrication, properties, and applications. arXiv preprint physics/0503114Google Scholar
  173. Sun H, Meng X, Han J, Zhang Z, Wang B, Bai X et al (2013) Anti-cancer activity of DHA on gastric cancer – an in vitro and in vivo study. Tumour Biol 34(6):3791–3800PubMedCrossRefGoogle Scholar
  174. Tang Q, Yu B, Gao L, Cong H, Song N, Lu C (2018) Stimuli responsive nanoparticles for controlled anti-cancer drug release. Curr Med Chem 25:1837–1866PubMedCrossRefGoogle Scholar
  175. Tardi P, Choice E, Masin D, Redelmeier T, Bally M, Madden TD (2000) Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 60(13):3389–3393PubMedGoogle Scholar
  176. Tas F, Sen F, Keskin S, Kilic L (2013) Oral etoposide as first-line therapy in the treatment of patients with advanced classic Kaposi’s sarcoma (CKS): a single-arm trial (oral etoposide in CKS). J Eur Acad Dermatol Venereol 27(6):789–792PubMedCrossRefGoogle Scholar
  177. Terwogt JMM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG et al (2001) Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs 12(4):315–323CrossRefGoogle Scholar
  178. Tomalia DA, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Portland Press Limited, LondonCrossRefGoogle Scholar
  179. Tu Y, Cheng S, Zhang S, Sun H, Xu Z (2013) Vincristine induces cell cycle arrest and apoptosis in SH-SY5Y human neuroblastoma cells. Int J Mol Med 31(1):113–119PubMedCrossRefGoogle Scholar
  180. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, Schiffelers RM (2017) Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front 1(8):1485–1501CrossRefGoogle Scholar
  181. Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S et al (2012) Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol BioSyst 8(4):1078–1087PubMedCrossRefGoogle Scholar
  182. Vergote I, Brize A, Lisyanskaya AS, Lichinitser M (2015) Randomized phase III study comparing paclical-carboplatin with paclitaxel-carboplatin in patients with recurrent platinum-sensitive epithelial ovarian cancer. Am Soc Clin Oncol.
  183. Vinay Kumar V, Rojarani K, Madhusudana K, Ramakrishna S, Prakash VD (2013) Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine 9(1):111–121Google Scholar
  184. von Pawel J (2003) The role of topotecan in treating small cell lung cancer: second-line treatment. Lung Cancer 41(Suppl 4):S3–S8CrossRefGoogle Scholar
  185. Walsh MD, Hanna SK, Sen J, Rawal S, Cabral CB, Yurkovetskiy AV et al (2012) Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin Cancer ResGoogle Scholar
  186. Wang F, Zhang D, Zhang Q, Chen Y, Zheng D, Hao L et al (2011a) Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 32(35):9444–9456PubMedCrossRefGoogle Scholar
  187. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011b) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692PubMedCrossRefGoogle Scholar
  188. Wang X-X, Li Y-B, Yao H-J, Ju R-J, Zhang Y, Li R-J et al (2011c) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24):5673–5687PubMedCrossRefGoogle Scholar
  189. Wang Y, Dou L, He H, Zhang Y, Shen Q (2014) Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm 11(3):885–894PubMedCrossRefGoogle Scholar
  190. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681PubMedPubMedCentralCrossRefGoogle Scholar
  191. Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84(1):1–20PubMedCrossRefGoogle Scholar
  192. Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin D, Schulz TK et al (2015) A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol 75(5):1075–1087PubMedPubMedCentralCrossRefGoogle Scholar
  193. Wu GS, Lu JJ, Guo JJ, Huang MQ, Gan L, Chen XP et al (2013) Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep 65(2):453–459PubMedCrossRefGoogle Scholar
  194. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z et al (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30(2):226–232PubMedCrossRefGoogle Scholar
  195. Xu X, Wang L, Xu H-Q, Huang X-E, Qian Y-D, Xiang J (2013) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14(4):2591–2594PubMedCrossRefGoogle Scholar
  196. Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N et al (2014) Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35(30):8635–8648PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yamori T, Sato S, Chikazawa H, Kadota T (1997) Anti-tumor efficacy of paclitaxel against human lung cancer xenografts. Jpn J Cancer Res 88(12):1205–1210PubMedPubMedCentralCrossRefGoogle Scholar
  198. Yang X, Deng W, Fu L, Blanco E, Gao J, Quan D et al (2008) Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A 86(1):48–60PubMedCrossRefGoogle Scholar
  199. Yang W, Cheng Y, Xu T, Wang X, Wen L-p (2009a) Targeting cancer cells with biotin–dendrimer conjugates. Eur J Med Chem 44(2):862–868PubMedCrossRefGoogle Scholar
  200. Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C et al (2009b) Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15(14):4722–4732PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yoshida K, Nagai T, Ohmine K, Uesawa M, Sripayap P, Ishida Y et al (2011) Vincristine potentiates the anti-proliferative effect of an aurora kinase inhibitor, VE-465, in myeloid leukemia cells. Biochem Pharmacol 82(12):1884–1890PubMedCrossRefGoogle Scholar
  202. Yuan Q, Venkatasubramanian R, Hein S, Misra R (2008) A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater 4(4):1024–1037PubMedCrossRefGoogle Scholar
  203. Yurkovetskiy AV, Fram RJ (2009) XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev 61(13):1193–1202PubMedCrossRefGoogle Scholar
  204. Zahreddine H, Borden KL (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4:28PubMedPubMedCentralCrossRefGoogle Scholar
  205. Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S et al (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:20051PubMedPubMedCentralCrossRefGoogle Scholar
  206. Zeidner JF, Karp JE (2015) Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 39(12):1312–1318PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769PubMedCrossRefGoogle Scholar
  208. Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y et al (2011) Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 32(23):5524–5533PubMedCrossRefGoogle Scholar
  209. Zhang Y, Huang Y, Li S (2014a) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech 15(4):862–871CrossRefGoogle Scholar
  210. Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D et al (2014b) Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev 46(2):232–246PubMedCrossRefGoogle Scholar
  211. Zhang M-Q, Lin X, Li Y, Lu S (2015) Irinotecan as a second-line chemotherapy for small cell lung cancer: a systemic analysis. Asian Pac J Cancer Prev APJCP 16(5):1993–1995PubMedCrossRefGoogle Scholar
  212. Zhou Y, Kopeček J (2013) Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 21(1):1–26PubMedCrossRefGoogle Scholar
  213. Zhou R, Mazurchuk R, Straubinger RM (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res 62(9):2561–2566PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Deeptashree Nandi
    • 1
  • Aakriti Singal
    • 1
  • Alo Nag
    • 1
  1. 1.Department of BiochemistryUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations