Advertisement

Cancer Chemoprevention by Dietary Polyphenols, Flavonoids, Terpenoids, and Saponins

  • Rahul L. Gajbhiye
  • Sanjit K. Mahato
  • Anushree Achari
  • Parasuraman Jaisankar
  • V. Ravichandiran
Chapter

Abstract

Cancer chemoprevention invokes the adoption of natural or man-made agents for the inhibition, delay, or reversal of carcinogenesis before an invasion. It is predicted that roughly one-third of all cancer deaths might be prevented through proper dietary alteration. Chemopreventives should be defined by low toxicity in therapeutic drugs and the possibility of an oral administration. Several epidemiological studies and preclinical evidence indicate that various nutraceuticals and dietary supplements display chemopreventive properties, which is well supported by in vitro and animal studies. Diet derived compounds widely investigated for their chemopreventive activity mostly belong to a class of polyphenols, flavonoids, terpenoids, or saponins. A well-balanced diet is an excellent source of macronutrients, micronutrients, and phytochemicals and can diminish the risk of cancer as well as provide cancer preventive activity.

Keywords

Dietary phytochemicals Cancer Chemoprevention Epidemiology Epigenetics Apoptosis 

References

  1. Al Rabadi L, Bergan R (2017) A way forward for cancer chemoprevention: think local. Cancer Prev Res (Phila) 10(1):14–35.  https://doi.org/10.1158/1940-6207.CAPR-16-0194 CrossRefGoogle Scholar
  2. Alam MN, Almoyad M, Huq F (2018) Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int 2018:4154185.  https://doi.org/10.1155/2018/4154185 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alhasan SA, Pietrasczkiwicz H, Alonso MD, Ensley J, Sarkar FH (1999) Genistein-induced cell cycle arrest and apoptosis in a head and neck squamous cell carcinoma cell line. Nutr Cancer 34(1):12–19CrossRefGoogle Scholar
  4. Arts IC, Hollman PC, Bueno De Mesquita HB, Feskens EJ, Kromhout D (2001) Dietary catechins and epithelial cancer incidence: the Zutphen elderly study. Int J Cancer 92(2):298–302CrossRefGoogle Scholar
  5. Bag A, Bag N (2018) Tea polyphenols and prevention of epigenetic aberrations in cancer. J Nat Sci Biol Med 9(1):2–5.  https://doi.org/10.4103/jnsbm.JNSBM_46_17 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhagwat S, Haytowitz DB, Wasswa-Kintu SI, Holden JM (2013) USDA develops a database for flavonoids to assess dietary intakes. Procedia Food Science 2:81–86CrossRefGoogle Scholar
  7. Berger A, Venturelli S, Kallnischkies M, Bocker A, Busch C, Weiland T, Noor S, Leischner C, Weiss TS, Lauer UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24(6):977–985.  https://doi.org/10.1016/j.jnutbio.2012.07.001 CrossRefPubMedGoogle Scholar
  8. Bimonte S, Leongito M, Barbieri A, Del Vecchio V, Barbieri M, Albino V, Piccirillo M, Amore A, Di Giacomo R, Nasto A, Granata V, Petrillo A, Arra C, Izzo F (2015) Inhibitory effect of (-)-epigallocatechin-3-gallate and bleomycin on human pancreatic cancer MiaPaca-2 cell growth. Infect Agent Cancer 10:22.  https://doi.org/10.1186/s13027-015-0016-y CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424.  https://doi.org/10.3322/caac.21492 CrossRefGoogle Scholar
  10. Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2003) Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 106(6):856–862CrossRefGoogle Scholar
  11. Cai Y, Zheng Y, Gu J, Wang S, Wang N, Yang B, Zhang F, Wang D, Fu W, Wang Z (2018) Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 9(6):636.  https://doi.org/10.1038/s41419-018-0669-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chakrabarti M, Ray SK (2015) Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells. Gene 573(1):141–152.  https://doi.org/10.1016/j.gene.2015.07.034 CrossRefPubMedGoogle Scholar
  13. Chen J, Jiu-Hong K (2005) Quercetin and trichostatin a cooperatively kill human leukemia cells. Pharmazie 60(11):856–860Google Scholar
  14. Chi C, Chang Y, Ou Y, Hsieh C, Lui W, PEng F, Liu T (1997) Effect of quercetin on the in vitro and in vivo growth of mouse hepatoma cells. Oncol Rep 4(5):1021–1024Google Scholar
  15. Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J (2017) Dietary flavonoids, CYP1A1 genetic variants, and the risk of colorectal cancer in a Korean population. Sci Rep 7(1):128.  https://doi.org/10.1038/s41598-017-00117-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Csokay B, Prajda N, Weber G, Olah E (2005) Molecular mechanisms in the antiproliferative action of quercetin. Life Sci 60(24):2157–2163CrossRefGoogle Scholar
  17. Cui Y, Morgenstern H, Greenland S, Tashkin DP, Mao JT, Cai L, Cozen W, Mack TM, Lu QY, Zhang ZF (2008) Dietary flavonoid intake and lung cancer – a population-based case-control study. Cancer 112(10):2241–2248.  https://doi.org/10.1002/cncr.23398 CrossRefPubMedPubMedCentralGoogle Scholar
  18. De Stefani E, Deneo-Pellegrini H, Mendilaharsu M, Ronco A (1999) Diet and risk of cancer of the upper aerodigestive tract – I. Foods. Oral Oncol 35(1):17–21CrossRefGoogle Scholar
  19. De Stefani E, Brennan P, Boffetta P, Ronco AL, Mendilaharsu M, Deneo-Pellegrini H (2000) Vegetables, fruits, related dietary antioxidants, and risk of squamous cell carcinoma of the esophagus: a case-control study in Uruguay. Nutr Cancer 38(1):23–29.  https://doi.org/10.1207/S15327914NC381_4 CrossRefPubMedGoogle Scholar
  20. Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53(3):153–159.  https://doi.org/10.1007/s00262-003-0474-8 CrossRefPubMedGoogle Scholar
  21. Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16(5):9236–9282.  https://doi.org/10.3390/ijms16059236 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37(3):287–303.  https://doi.org/10.1016/j.freeradbiomed.2004.04.034 CrossRefPubMedGoogle Scholar
  23. Ganai SA (2017) Plant-derived flavone Apigenin: the small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed Pharmacother 85:47–56.  https://doi.org/10.1016/j.biopha.2016.11.130 CrossRefPubMedGoogle Scholar
  24. Gao AM, Zhang XY, Hu JN, Ke ZP (2018) Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis. Chem Biol Interact 280:45–50.  https://doi.org/10.1016/j.cbi.2017.11.020 CrossRefPubMedGoogle Scholar
  25. Gapstur SM, Drope JM, Jacobs EJ, Teras LR, McCullough ML, Douglas CE, Patel AV, Wender RC, Brawley OW (2018) A blueprint for the primary prevention of cancer: targeting established, modifiable risk factors. CA Cancer J Clin 68(6):446–470.  https://doi.org/10.3322/caac.21496 CrossRefPubMedGoogle Scholar
  26. Garcia-Closas R, Gonzalez CA, Agudo A, Riboli E (1999) Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control 10(1):71–75CrossRefGoogle Scholar
  27. Geybels MS, Verhage BA, Arts IC, van Schooten FJ, Goldbohm RA, van den Brandt PA (2013) Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol 177(12):1388–1398.  https://doi.org/10.1093/aje/kws419 CrossRefPubMedGoogle Scholar
  28. Goker B, Caliskan C, Onur Caglar H, Kayabasi C, Balci T, Erbaykent Tepedelen B, Aygunes D, Yilmaz Susluer S, Mutlu Z, Selvi Gunel N, Korkmaz M, Saydam G, Gunduz C, Biray Avci C (2014) Synergistic effect of ponatinib and epigallocatechin-3-gallate induces apoptosis in chronic myeloid leukemia cells through altering expressions of cell cycle regulatory genes. J BUON 19(4):992–998PubMedGoogle Scholar
  29. Guclu-Ustundag O, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258.  https://doi.org/10.1080/10408390600698197 CrossRefPubMedGoogle Scholar
  30. Hakimuddin F, Paliyath G, Meckling K (2004) Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-​7 cells. Breast Cancer Res Treat 85(1):65–79CrossRefGoogle Scholar
  31. Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, Akashi K, Hara Y (1998) Induction of apoptosis in human stomach cancer cells by green tea catechins. Oncol Rep 5(2):527–529PubMedGoogle Scholar
  32. Horie N, Hirabayashi N, Takahashi Y, Miyauchi Y, Taguchi H, Takeishi K (2005) Synergistic effect of green tea Catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol Pharm Bull 28(4):574–579CrossRefGoogle Scholar
  33. Hsu CP, Shih YT, Lin BR, Chiu CF, Lin CC (2012) Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J Agric Food Chem 60(14):3686–3692.  https://doi.org/10.1021/jf204619n CrossRefPubMedGoogle Scholar
  34. Huynh H, Nguyen T, Chan E, Tran E (2003) Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 23(3):821–829Google Scholar
  35. Inoue M, Tajima K, Mizutani M, Iwata H, Iwase T, Miura S, Hirose K, Hamajima N, Tominaga S (2001) Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett 167(2):175–182CrossRefGoogle Scholar
  36. Jeong MH, Ko H, Jeon H, Sung GJ, Park SY, Jun WJ, Lee YH, Lee J, Lee SW, Yoon HG, Choi KC (2016) Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells. Oncotarget 7(35):56767–56780.  https://doi.org/10.18632/oncotarget.10790 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jin X, Sun J, Miao X, Liu G, Zhong D (2013) Inhibitory effect of geraniol in combination with gemcitabine on proliferation of BXPC-3 human pancreatic cancer cells. J Int Med Res 41(4):993–1001.  https://doi.org/10.1177/0300060513480919 CrossRefPubMedGoogle Scholar
  38. Johnson JJ, Syed DN, Suh Y, Heren CR, Saleem M, Siddiqui IA, Mukhtar H (2010) Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. Cancer Prev Res (Phila) 3(9):1112–1123.  https://doi.org/10.1158/1940-6207.CAPR-10-0168 CrossRefGoogle Scholar
  39. Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M (2018) Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 23(1):36.  https://doi.org/10.1186/s12199-018-0724-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51(1):68–75.  https://doi.org/10.1021/jf025781x CrossRefPubMedGoogle Scholar
  41. Key TJ, Sharp GB, Appleby PN, Beral V, Goodman MT, Soda M, Mabuchi K (1999) Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki, Japan. Br J Cancer 81(7):1248–1256.  https://doi.org/10.1038/sj.bjc.6690837 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kim SH, Park EJ, Lee CR, Chun JN, Cho NH, Kim IG, Lee S, Kim TW, Park HH, So I, Jeon JH (2012) Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 40(5):1683–1690.  https://doi.org/10.3892/ijo.2011.1318 CrossRefPubMedGoogle Scholar
  43. Kim EH, Baek S, Shin D, Lee J, Roh JL (2017) Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxidative Med Cell Longev 2017:5498908.  https://doi.org/10.1155/2017/5498908 CrossRefGoogle Scholar
  44. Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146(3):223–230CrossRefGoogle Scholar
  45. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568.  https://doi.org/10.1093/ajcn/76.3.560 CrossRefPubMedGoogle Scholar
  46. Konoshima T, Kokumai M, Kozuka M, Tokuda H, Nishino H, Iwahima A (1992) Anti-tumor-promoting activities of Afromosin and Soyasaponin I isolated from Wistaria brachybotrys. J Nat Prod 55(12):1776–1778CrossRefGoogle Scholar
  47. Kumi-Diaka J, Sanderson N-A, Hall A (2000) The mediating role of caspase-3 protease in the intracellular mechanism of genistein-induced apoptosis in human prostatic carcinoma cell lines, DU145 and LNCaP. Biol Cell 92(8–9):595–604CrossRefGoogle Scholar
  48. Kurahashi N, Sasazuki S, Iwasaki M, Inoue M, Tsugane S, Group JS (2008) Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol 167(1):71–77.  https://doi.org/10.1093/aje/kwm249 CrossRefPubMedGoogle Scholar
  49. Kyle JA, Sharp L, Little J, Duthie GG, McNeill G (2010) Dietary flavonoid intake and colorectal cancer: a case-control study. Br J Nutr 103(3):429–436.  https://doi.org/10.1017/S0007114509991784 CrossRefPubMedGoogle Scholar
  50. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92(2):154–160CrossRefGoogle Scholar
  51. Lee H, Cho H, Yu R, Lee K, Chun H, Park J (2014) Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human Colon Cancer cells. Int J Mol Sci 15(2):2722–2737CrossRefGoogle Scholar
  52. Lee MH, Han DW, Hyon SH, Park JC (2011) Apoptosis of human fibrosarcoma HT-1080 cells by epigallocatechin-3-O-gallate via induction of p53 and caspases as well as suppression of Bcl-2 and phosphorylated nuclear factor-kappaB. Apoptosis 16(1):75–85.  https://doi.org/10.1007/s10495-010-0548-y CrossRefPubMedGoogle Scholar
  53. Li Y, Bhuiyan M, Sarkar FH (1999) Induction of apoptosis and inhibition of c-erbB-2 in MDA-MB-435 cells by genistein. Int J Oncol 15(3):525–533Google Scholar
  54. Lian F, Li Y, Bhuiyan M, Sarkar FH (1999) p53-independent apoptosis induced by genistein in lung cancer cells. Nutr Cancer 33(2):125–131CrossRefGoogle Scholar
  55. Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z, Tang H, Li QQ (2010) Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 37(1):111–123PubMedGoogle Scholar
  56. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374.  https://doi.org/10.3390/molecules21101374 CrossRefPubMedCentralGoogle Scholar
  57. Lingyan Z, Fan Y, Li H, Aixue L, Jiren Z (2017) Luteolin enhances the antitumor activity of lapatinib in human breast cancer cells. Biomed Res 28(11):4902–4907Google Scholar
  58. Liu W, Xu J, Liu Y, Yu X, Tang X, Wang Z, Li X (2014) Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo. Mol Med Rep 10(4):1921–1926.  https://doi.org/10.3892/mmr.2014.2414 CrossRefPubMedGoogle Scholar
  59. Liu Y, Bi T, Dai W, Wang G, Qian L, Shen G, Gao Q (2016) Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells. Naunyn Schmiedeberg’s Arch Pharmacol 389(5):477–484.  https://doi.org/10.1007/s00210-016-1221-y CrossRefGoogle Scholar
  60. Liu X, Zhang D, Hao Y, Liu Q, Wu Y, Liu X, Luo J, Zhou T, Sun B, Luo X, Xu J, Wang Q, Yang Z, Li L (2018) Cyanidin curtails renal cell carcinoma tumorigenesis. Cell Physiol Biochem 46(6):2517–2531.  https://doi.org/10.1159/000489658 CrossRefPubMedGoogle Scholar
  61. Luo H, Daddysman MK, Rankin GO, Jiang BH, Chen YC (2010) Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int 10:16.  https://doi.org/10.1186/1475-2867-10-16 CrossRefPubMedPubMedCentralGoogle Scholar
  62. McGuire S (2016) World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 7(2):418–419.  https://doi.org/10.3945/an.116.012211 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218(2):141–151CrossRefGoogle Scholar
  64. Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2013) Combinations of plant polyphenols & anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem 13(2):281–295CrossRefGoogle Scholar
  65. Morris J, Moseley VR, Cabang AB, Coleman K, Wei W, Garrett-Mayer E, Wargovich MJ (2016) Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRalpha expression in human colon cancer cells. Oncotarget 7(23):35313–35326.  https://doi.org/10.18632/oncotarget.9204 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mosby TT, Cosgrove M, Sarkardei S, Platt KL, Kaina B (2012) Nutrition in adult and childhood cancer: role of carcinogens and anti-carcinogens. Anticancer Res 32(10):4171–4192PubMedGoogle Scholar
  67. Mouria M, Gukovskaya AS, Jung Y, Buechler P, Hines OJ, Reber HA, Pandol SJ (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer 98(5):761–769CrossRefGoogle Scholar
  68. Nguyen TTT (2003) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25(5):647–659CrossRefGoogle Scholar
  69. Niu G, Sun L, Pei Y, Wang D (2018) Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer Agents Med Chem 18(4):583–590.  https://doi.org/10.2174/1871520617666171020124916 CrossRefPubMedGoogle Scholar
  70. Pan H, Li J, Rankin GO, Rojanasakul Y, Tu Y, Chen YC (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3′-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1–11.  https://doi.org/10.1016/j.jff.2018.04.037 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Petrick JL, Steck SE, Bradshaw PT, Trivers KF, Abrahamson PE, Engel LS, He K, Chow WH, Mayne ST, Risch HA, Vaughan TL, Gammon MD (2015) Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). Br J Cancer 112(7):1291–1300.  https://doi.org/10.1038/bjc.2015.25 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rabi T, Bishayee A (2009) d -Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis. J Carcinog 8:9.  https://doi.org/10.4103/1477-3163.51368 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rabi T, Gupta S (2008) Dietary terpenoids and prostate cancer chemoprevention. Front Biosci 13:3457–3469CrossRefGoogle Scholar
  74. Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61(1):27–35.  https://doi.org/10.1080/01635580802357352 CrossRefPubMedGoogle Scholar
  75. Schlachterman A, Valle F, Wall KM, Azios NG, Castillo L, Morell L, Washington AV, Cubano LA, Dharmawardhane SF (2008) Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl Oncol 1(1):19–27CrossRefGoogle Scholar
  76. Scott EN, Gescher AJ, Steward WP, Brown K (2009) Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila) 2(6):525–530.  https://doi.org/10.1158/1940-6207.CAPR-08-0223 CrossRefGoogle Scholar
  77. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6(9):2544–2553.  https://doi.org/10.1158/1535-7163.MCT-06-0788 CrossRefPubMedGoogle Scholar
  78. Shih P-H, Yeh C-T, Yen G-C (2005) Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem Toxicol 43(10):1557–1566CrossRefGoogle Scholar
  79. Shyu MH, Kao TC, Yen GC (2010) Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem 58(10):6110–6118.  https://doi.org/10.1021/jf100574j CrossRefPubMedGoogle Scholar
  80. Simons CC, Hughes LA, Arts IC, Goldbohm RA, van den Brandt PA, Weijenberg MP (2009) Dietary flavonol, flavone and catechin intake and risk of colorectal cancer in the Netherlands Cohort study. Int J Cancer 125(12):2945–2952.  https://doi.org/10.1002/ijc.24645 CrossRefPubMedGoogle Scholar
  81. Su LJ, Arab L (2002) Tea consumption and the reduced risk of colon cancer – results from a national prospective cohort study. Public Health Nutr 5(3):419–425.  https://doi.org/10.1079/PHNPHN2001314 CrossRefPubMedGoogle Scholar
  82. Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64(4):599–606.  https://doi.org/10.1080/01635581.2012.665564 CrossRefPubMedGoogle Scholar
  83. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780.  https://doi.org/10.1038/nrc1189 CrossRefPubMedGoogle Scholar
  84. Szyf M (2015) Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 14(7):461–474CrossRefGoogle Scholar
  85. Tan X, Hu D, Li S, Han Y, Zhang Y, Zhou D (2000) Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells. Cancer Lett 158(1):1–6CrossRefGoogle Scholar
  86. Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17(3):3202–3242.  https://doi.org/10.3390/molecules17033202 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals – promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120(3):451–458.  https://doi.org/10.1002/ijc.22419 CrossRefPubMedGoogle Scholar
  88. Valcic S, Timmermann BN, Alberts DS, Wachter GA, Krutzsch M, Wymer J, Guillen JM (1996) Inhibitory effect of six green tea catechins and caffeine on the growth of four selected human tumor cell lines. Anticancer Drugs 7(4):461–468CrossRefGoogle Scholar
  89. Wakai K, Ohno Y, Genka K, Ohmine K, Kawamura T, Tamakoshi A, Lin Y, Nakayama T, Aoki K, Fukuma S (1999) Risk modification in lung cancer by a dietary intake of preserved foods and soyfoods: findings from a case-control study in Okinawa, Japan. Lung Cancer 25(3):147–159CrossRefGoogle Scholar
  90. Wang L, Feng J, Chen X, Guo W, Du Y, Wang Y, Zang W, Zhang S, Zhao G (2014) Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int 14:71.  https://doi.org/10.1186/s12935-014-0071-2 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang SW, Chen YR, Chow JM, Chien MH, Yang SF, Wen YC, Lee WJ, Tseng TH (2018) Stimulation of Fas/FasL-mediated apoptosis by luteolin through enhancement of histone H3 acetylation and c-Jun activation in HL-60 leukemia cells. Mol Carcinog 57(7):866–877.  https://doi.org/10.1002/mc.22807 CrossRefPubMedGoogle Scholar
  92. Wiseman MJ (2018) Nutrition and cancer: prevention and survival. Br J Nutr 1–7. doi: https://doi.org/10.1017/S0007114518002222
  93. Wu H, Xin Y, Xu C, Xiao Y (2012) Capecitabine combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Exp Ther Med 3(4):650–654.  https://doi.org/10.3892/etm.2012.448 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Xiao B, Qin Y, Ying C, Ma B, Wang B, Long F, Wang R, Fang L, Wang Y (2017) Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model. Mol Med Rep 16(6):9375–9382.  https://doi.org/10.3892/mmr.2017.7784 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Xu Z, Huang B, Liu J, Wu X, Luo N, Wang X, Zheng X, Pan X (2018) Combinatorial anti-proliferative effects of tamoxifen and naringenin: the role of four estrogen receptor subtypes. Toxicology 410:231–246.  https://doi.org/10.1016/j.tox.2018.08.013 CrossRefPubMedGoogle Scholar
  96. Yanagihara K, Akihiro I, Tetsuya T, Michitaka N (1993) Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res 53(23):5815–5821Google Scholar
  97. Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS (1998) Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19(4):611–616CrossRefGoogle Scholar
  98. Yang XW, Wang XL, Cao LQ, Jiang XF, Peng HP, Lin SM, Xue P, Chen D (2012) Green tea polyphenol epigallocatechin-3-gallate enhances 5-fluorouracil-induced cell growth inhibition of hepatocellular carcinoma cells. Hepatol Res 42(5):494–501.  https://doi.org/10.1111/j.1872-034X.2011.00947.x CrossRefPubMedGoogle Scholar
  99. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707.  https://doi.org/10.1016/j.biopha.2018.04.072 CrossRefPubMedGoogle Scholar
  100. Zhang B, Xin Y, Hong X (2015) The flavonoid luteolin enhances doxorubicin-induced autophagy in human osteosarcoma U2OS cells. Int J Clin Exp Med 8(9):15190–15197Google Scholar
  101. Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci 76(13):1465–1472.  https://doi.org/10.1016/j.lfs.2004.08.025 CrossRefPubMedGoogle Scholar
  102. Zhang KJ, Gu QL, Yang K, Ming XJ, Wang JX (2017) Anticarcinogenic effects of alpha-mangostin: a review. Planta Med 83(3–04):188–202.  https://doi.org/10.1055/s-0042-119651 CrossRefPubMedGoogle Scholar
  103. Zhou DH, Wang X, Feng Q (2014) EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr Cancer 66(4):636–644.  https://doi.org/10.1080/01635581.2014.894101 CrossRefPubMedGoogle Scholar
  104. Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang C, Lin L, Kong AN (2018) The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 119(11):9573–9582.  https://doi.org/10.1002/jcb.27275 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rahul L. Gajbhiye
    • 1
    • 2
  • Sanjit K. Mahato
    • 3
    • 4
  • Anushree Achari
    • 2
  • Parasuraman Jaisankar
    • 2
  • V. Ravichandiran
    • 1
  1. 1.National Institute of Pharmaceutical Education and Research (NIPER)KolkataIndia
  2. 2.Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia
  3. 3.TCG Lifesciences Private LimitedKolkataIndia
  4. 4.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations