Advertisement

Agriculture Application of Pseudomonas: A View on the Relative Antagonistic Potential Against Pests and Diseases

  • K. Sankari Meena
  • M. Annamalai
  • S. R. Prabhukarthikeyan
  • U. Keerthana
  • M. K. Yadav
  • P. C. Rath
  • M. Jena
  • P. Prajna
Chapter

Abstract

Agriculture is an important factor for improving economy of the country. Productivity of the crop is drastically reduced due to the incidence of biotic factors such as pests, diseases and nematodes as their infestation causes huge economic loss to the farmers. Biocontrol agents are excellent candidates for the reduction of biotic stresses and effective alternative to the chemicals as chemicals cause a huge menace to the environment. Among biocontrol agents, plant growth-promoting rhizobacteria (PGPR) is important group of root-colonizing bacteria which help in the promotion of plant growth in addition to the suppression of pests and diseases. Pseudomonas is an important candidate belonging to PGPR which is a gram-negative and rod-shaped bacteria. Efficacy of various strains of these bacteria in enhancing the plant growth and suppression of pest and diseases were well proved. This chapter deals with the pioneering and recent works of Pseudomonas in the management of pests, diseases and nematodes. This review will help in the research work that involves Pseudomonas as a potential bioagent in the management of pests, diseases and nematodes.

Keywords

Pseudomonas spp. Insect pests Diseases Nematodes Biomanagement 

Notes

Acknowledgement

The authors are thankful to the Director, ICAR-NRRI, Cuttack, Odisha, for providing the necessary facilities to write this article.

References

  1. Akhtar S, Panwar J (2012) Efficacy of root associated fungi and PGPR on the growth of Pisumsativum (cv. Arkil) and reproduction of the root knot nematode, Meloidogyne incognita. J Basic Microbiol 23:1521–4028Google Scholar
  2. Alexandra A, Olga A, Valentina A, Julia V, Zaitseva A, Katkova-Zhukotskaya AS, Leonid S, Inessa A (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster. Bio Med Res Int 1:1–11Google Scholar
  3. Ali NI, Shaukat SS, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058CrossRefGoogle Scholar
  4. Anamika SS, Singh KP, Ghosh G (2011) Distribution of root-knot nematode on major field crops in Uttar Pradesh (India). Arch Phytopathology Plant protect 44(2):191–197CrossRefGoogle Scholar
  5. Arseneault T, Goyer C, Filion M (2013) Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995–1000PubMedCrossRefGoogle Scholar
  6. Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root knot nematode, Meloidogyne incognita. J Am Sci 6(10):321–328Google Scholar
  7. Aswathy V (2015) Management of epilachna beetle, Henosepilachna vigintioctopunctata (Fab.) with phylloplane and pathogenic microorganisms. Dissertation, Agricultural University, ThrissurGoogle Scholar
  8. Bakthavatchalu S, Shivakumar S, Sullia S (2013) Molecular detection of antibiotic related genes from Pseudomonas aeruginosa FP6, an antagonist towards rhizoctonia solani and colletotrichum gloeosporioides. Turk J Biol 37:289–295Google Scholar
  9. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397–2406CrossRefGoogle Scholar
  10. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape and structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea. J Invertebr Pathol 57:406–412CrossRefGoogle Scholar
  12. Burkhead K, Geoghegan MJ (1994) Antibiotics. In: Burkhead K (ed) Soil borne plant pathogens. Macmillan, New York, pp 351–368Google Scholar
  13. Chavan BP, Kadam R (2009) Effect of combination of adjuvants of liquid formulations of Verticillium lecanii (Zimmermann) viegas and their efficacy. J Biol Ctrl 23(1):73–77Google Scholar
  14. Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiol Mol Plant Pathol 56:13–23CrossRefGoogle Scholar
  15. Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. Crop Prot 21:671–677CrossRefGoogle Scholar
  16. Cronin DYM, Loccoz A, Ffenton C, Dunne DN, Dowlind GFA (1997) Role of 2,4-Diacethlphloroglucinol in the interactions of the biocontrol Pseudomonas strain F113 with the potato cyst nematode, G. rostochiensis. Appl Environ Microbiol 63(4):1357–1361PubMedPubMedCentralGoogle Scholar
  17. De Lima Pimenta A, Di Martino P, Le Bouder E, Hulen C, Blight MA (2003) In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microb Infect 5:1177–1187CrossRefGoogle Scholar
  18. Devi KK, Kothamasi D (2009) Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochromec oxidase of the termite respiratory chain. FEMS Microbiol Lett 300:195–200PubMedCrossRefPubMedCentralGoogle Scholar
  19. El-Hamshary OIM, El-Nagdi WMA, Youssef MMA (2004) Genetical studies and antagonistic effects of a newly bacterial fusant against M. incognita root knot nematode, infecting sunflower and plant pathogen Fusarium oxysporum. J Genet Eng Biotechnol (NRC) 2(2):233–246Google Scholar
  20. Faisal M, Nagendran P, Karthikeyan G, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protect 65:186–193CrossRefGoogle Scholar
  21. Ganesan P, Gnanamanickam SS (1987) Biological control of Sclerotium rolfsii Sacc., in peanut by inoculation with Pseudomonas fluorescens. Soil Biol Biochem 19:35–39CrossRefGoogle Scholar
  22. Gaur AC (1990) Phosphate solubilising microorganisms as biofertilizers. Omega Scientific Publishers, New DelhiGoogle Scholar
  23. Gopal M, Gupta A, Sathiamma B (2002) Microbial pathogens of the coconut pest Oryctes rhinoceros: influence of weather factors on their infectivity and study of their coincidental ecology in Kerala, India. World J Microbiol Biotechnol 18:417CrossRefGoogle Scholar
  24. Haas D, Defago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  25. Hallamann J, Quadt-Hallamann A, Miller WG, Sikora RA, Lindow SE (2001) Endophyte colonization of plants by biocontrol agents Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91(4):415–442CrossRefGoogle Scholar
  26. Hamid M, Siddiqui IA, Shahid Shaukat S (2003) Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Lett Appl Microbiol 36(4):239–244PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hanna AI, Riad FW, Tawfik AE (1999) Efficacy of antagonistic rhizobacteria on the control of root knot nematode, Meloidogyne incognita in tomato plants. Egypt J Agric Res 77(4):1467–1476Google Scholar
  28. Haseeb A, Sharma A, Shukla PK (2005) Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108. J Zhejiang Univ Sci B 6(8):736–742PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hashimoto Y (2002) Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep Hokkaido Prefect Agric Exp Sta 102:1–48Google Scholar
  30. Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61:6786–6791PubMedCrossRefGoogle Scholar
  31. Jayashree K, Shanmugam V, Raguchander T, Ramanathan A, Samiyappan R (2000) Evaluation of Pseudomonas fluorescens (Pf-1) against black gram. J Biol Ctrl 14(2):55–61Google Scholar
  32. Jonathan EI, Sandeep A, Cannayane I, Umamaheswari R (2006) Bioefficacy of Pseudomonas fluorescens on Meloidogyne incognita in banana. Nematol medit 34:19–25Google Scholar
  33. Jothi G, Sivakumar M, Rajendran G (2003) Management of root knot nematode by Pseudomonas fluorescens in tomato. Indian J Nematol 33(1):87–88Google Scholar
  34. Karssen G, Moens M (2006) Root-knot nematodes. In: Perry RN, Moens M (eds) Plant nematol. CABI Publishing, Wallingford, pp 59–90CrossRefGoogle Scholar
  35. Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaf folder pest and sheath blight disease of rice. Pest Manag Sci 66:555–564PubMedCrossRefGoogle Scholar
  36. Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45:71–77CrossRefGoogle Scholar
  37. Khakipour N, Khavazi K, Mojallali H, Pazira E, Asadirahmani H (2008) Production of auxin hormone by fluorescent pseudomonads. J Agric Environ Sci 4:687–692Google Scholar
  38. Khan MR (2007) Prospects of microbial control of root knot nematodes infecting vegetable crops. In: Sharma N, Singh HB (eds) Biotechnology: plant health management. International Book Distributing Co, Lucknow, pp 643–665Google Scholar
  39. Khan MR, Akram M (2000) Effect of certain antagonistic fungi and rhizobacteria on wilt disease complex caused by Meloidogyne incognita and Fusarium oxysporum f.sp. lycopersici on tomato. Nematol Mediterr 28:139–144Google Scholar
  40. Khan MR, Haque Z (2011) Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root knot nematode, Meloidogyne incognita on tobacco. Phytopathol Mediterr 50:257–266Google Scholar
  41. Khan MR, Tarannum Z (1999) Effect of field application of various microorganisms on the root-knot disease of tomato. Nematol Mediterr 27:33–38Google Scholar
  42. Khan MR, Khan SM, Khan N (2001) Effects of soil application of certain fungal and bacterial bioagents against Meloidogyne incognita infecting chickpea. Paper presented at the National congress on Centenary of Nematology in India: Appraisal and Future Plans, Division of Nematology, Indian Agricultural Research Institute, New Delhi, 5–7 December 2001Google Scholar
  43. Khan MR, Altaf S, Mohiddin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers Inc, New York, pp 395–426CrossRefGoogle Scholar
  44. Khan MR, Mohidin FA, Ahamad F (2016) Native Pseudomonas spp. suppressed the root knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mung bean. Biol Contrl 101:159–168CrossRefGoogle Scholar
  45. Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27(11):887–900PubMedCrossRefGoogle Scholar
  46. Lanteigne C, Vijay J, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973PubMedCrossRefGoogle Scholar
  47. Lysenko O, Kucera M (1971) The mechanism of pathogenicity of Pseudomonas aeruginosa. Folia Microbiol Prague 13:259–299Google Scholar
  48. Mane PB, Mhase NL (2017) Bioefficacy of different bioagents against root knot nematode, Meloidogyne incognita infesting bottle gourd under laboratory conditions. Int J Plant Prot 10(1):87–91CrossRefGoogle Scholar
  49. Manikandan R, Raguchander T (2014) Fusarium oxysporum f.sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1). Eur J Plant Pathol 140:469–480CrossRefGoogle Scholar
  50. Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Sammiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens, Pf 1 for its efficacy against Fusarium wilt of tomato. Biol Ctrl 54(2):83–89Google Scholar
  51. Maria PT, Denny J, Esther F, Marcella D, Henkels K, Donahue M (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant associated strains of Pseudomonas fluorescens. Environ Microbiol 9(2):3–19Google Scholar
  52. Meca A, Sepulveda B, Ogona JC, Grados N, Moret A, Morgan M (2009) In vitro pathogenicity of northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantifolia Swingle and white rats. Span J Agric Res 7(1):137–145CrossRefGoogle Scholar
  53. Melvin JM, Muthukumaran N (2008) Role of certain elicitors on the chemical induction of resistance in tomato against the leaf caterpillar, Spodoptera litura. Not Bot Hort Agrobot Cluj 36(2):71–75Google Scholar
  54. Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E (2003) Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71:2404–2413PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mohandkaci HO, Khemili S, Benzena F, Halouane F (2015) Isolation and identification of entomopathogenic bacteria from Algerian desert soil and their effects against migratory locust, Locusta migratoria (L.). Egyptian J Biol Pest Control 25(3):739–746Google Scholar
  56. Muthulakshmi M, Devrajan K (2015) Management of Meloidogyne incognita by Pseudomonas fluorescens and Trichoderma viride in Mulberry. Int J Plant Prot 8(1):1–6CrossRefGoogle Scholar
  57. Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD (2006) Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Tech 16:403–416CrossRefGoogle Scholar
  58. Narasimhamurthy HB, Ravindra H, Sehgal M, Ekabote SD, Ganapathi (2017) Bio management of rice root-knot nematode (Meloidogyne graminicola). J Entomol Zool Stud 5(4):1433–1439Google Scholar
  59. Olcott MH, Henkels MD, Rosen KL, Walker FL, Sneh B, Loper JE, Taylor BJ (2010) Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5(9):e12504.  https://doi.org/10.1371/journal.pone.0012504 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259PubMedPubMedCentralCrossRefGoogle Scholar
  61. Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K (2004) Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci Tech 14:427–439CrossRefGoogle Scholar
  62. Pechy Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386PubMedCrossRefGoogle Scholar
  63. Pechy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, Radovanovic D (2013) Control and host dependent activation of insect toxin expression in a root associated biocontrol pseudomonad. Environ Microbiol 15:736–750PubMedCrossRefGoogle Scholar
  64. Pieterse CM, Leon-Reyes A, Vander ES, Van Wees SC (2009) Networking by small molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMedCrossRefGoogle Scholar
  65. Pimenta DLA, Martino DP, Bouder LE, Hulen C, Blight MA (2003) In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microbiol Infecta 5:1177–1187CrossRefGoogle Scholar
  66. Prabakaran G, Paily KP, Padmanabhan V, Hoti SL, Balaraman K (2002) Isolation of a Pseudomonas fluorescens metabolite/exotoxin active against both larvae and pupae of vector mosquitoes. Pest Manag Sci 59:21–24CrossRefGoogle Scholar
  67. Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting of young seedling at plumular axis. Acta Phytophylacica Sin 25:209–212Google Scholar
  68. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefGoogle Scholar
  69. Rajinikanth R, Rao MS, Pavani KV, Manojkumar R, Chaya MK, Rathnamma K, Shivananda TN (2013) Management of nematode induced disease complex in seedlings of cauliflower (Brassica oleracea var botrytis) using biopesticide. Pest Manag Hort Ecosyst 19(2):203–210Google Scholar
  70. Rajkumar RR, Sivakumar G, Nagesh M (2013) Screening and in vitro evaluation of native Pseudomonas spp., against nematode pathogens and soil borne fungal pathogens. J Biol Control 27(4):305–311Google Scholar
  71. Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci and Res 2:16–24Google Scholar
  72. Rao AB (1990) Role of microorganisms in plant nutrition under acid conditions. In: Vyas LL (ed) Biofertilizers. Scientific Publ, Jaudpur, pp 67–84Google Scholar
  73. Rao MS, Naik D, Shylaja M (2004) Bio intensive management of root-knot nematodes on bell pepper using Pochonia chlamydosporia and Pseudomonas fluorescens. Nematol Medit 32:159–163Google Scholar
  74. Rao MS, Umamaheswari R, Prabu P, Priti K, Chaya MK, Kamalnath M, Grace GN, Rajinikanth R, Gopalakrishnan C (2017) Field Performance of Pseudomonas putida (IIHR Pp-2) for the Management of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum disease complex in Okra (Abelmoschus esculentus). Vegetos.  https://doi.org/10.5958/2229-4473.2017.00185.9 CrossRefGoogle Scholar
  75. Ruffner B (2013). Insecticidal activity in plant-beneficial pseudomonads: molecular basis and ecological relevance. Dissertation, ETH ZurichGoogle Scholar
  76. Ruffner B, Pechy-Tarr M, Ryffel F, Hoegger P, Obrist C, Rindlisbacher A (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763PubMedCrossRefGoogle Scholar
  77. Ryals JK, Neuenschwander UH, Willits MG, Molina A, Steiner H, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sandeep Kumar M, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Euro J Soil Biol 45:334–340CrossRefGoogle Scholar
  79. Sankari Meena K, Jonathan EI, Devrajan K, Raguchander T (2002) P. fluorescens induced systemic resistance in tomato against Meloidogyne incognita. Indian J Nematol 42(1):5–10Google Scholar
  80. Sankari Meena K, Jonathan EI, Devrajan K (2014) Viability studies of Pseudomonas fluorescens, Pf 1 in liquid formulation, its effect on plant growth and on root knot nematode, Meloidogyne incognita. Ind J Agric Sci 84(8):993–998Google Scholar
  81. Sankari Meena K, Ramyabharathi S, Raguchander T (2016) Biomanagement of nematode – fungus disease complex in tuberose using plant growth promoting rhizobacteria. Int J Sci Nat 7(3):557–565Google Scholar
  82. Saravanakumar D, Samiyappan R (2007) ACC deaminase from P. fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292CrossRefGoogle Scholar
  83. Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2007) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plant against leaf folder. J Appl Entomol 132:469–479CrossRefGoogle Scholar
  84. Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biol Control 54:273–286Google Scholar
  85. Seenivasan N, Lakshmanan PL (2001) Effect of culture filtrates of Pseudomonas fluorescens on rice root nematode, Hirschmanniella gracilis. Pestol 25:11–12Google Scholar
  86. Senthilkumar P, Jonathan EI, Samiyappan R (2008) Bioefficacy of Pseudomonas fluorescens against burrowing nematode Radopholus similis in banana. Madras Agril J 95:407–414Google Scholar
  87. Senthilraja G, Anand T, Durairaj C, Raguchander T, Samiyappan R (2010) Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leafminer and collar rot in groundnut. Crop Protect 29:1003–1010CrossRefGoogle Scholar
  88. Sezen K, Demir Y, Kati H, Demirbag Z (2004) Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43(5):463–468Google Scholar
  89. Sezen K, Demir Y, Demirbag Z (2007) Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Z J Crop Hort Sci 35(1):79–85CrossRefGoogle Scholar
  90. Siddiqui ZA, Aakhtar MS (2008) Effects of organic wasters Glomus interadices and Pseudomonas putida on the growth of tomato and on the reproduction of the root-knot nematode Meloidogyne incognita. Phytoparasitica 36(5):460–471CrossRefGoogle Scholar
  91. Siddiqui AI, Ehteshamul-Haque S (2001) Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other associated plant bacteria. Plant Soil 237:81–89CrossRefGoogle Scholar
  92. Siddiqui IA, Haque SE (2001) Suppression of the root rot – root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237(1):81–89CrossRefGoogle Scholar
  93. Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bio resource Tech 69:167–179CrossRefGoogle Scholar
  94. Siddiqui IA, Shaukat SS (2003) Impact of biocontrol Pseudomonas fluorescens CHAO and its genetically modified derivatives on penetration of Meloidogyne javanica in Mung bean roots. Nematol Mediterr 31:43–45Google Scholar
  95. Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. Phytoparasitica 23:435–441Google Scholar
  96. Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant-Parasitic nematodes in subtropical and tropical agriculture. CABI Pub. UK, Wallingford, pp 319–392CrossRefGoogle Scholar
  97. Spence C, Alff E, Johnson C, Ramos C, Donofrio D, Venkatesan S, Harish B (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130PubMedPubMedCentralCrossRefGoogle Scholar
  98. Srinivasan N, Parameswaran S, Sridar RP, Gopalakrishnan C, Gnanamurthy P (2001) Bioagent of Meloidogyne incognita on turmeric. Paper presented at National Congress on Centenary of Nematology in India: Appraisal and Future Plans, Division of Nematology, Indian Agricultural Research Institute, 5–7 December 2001Google Scholar
  99. Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230–2235PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A (2012) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 20:1–7Google Scholar
  101. Surajit K, Chowdhury AK (2008) Biological control of rhizome rot disease of turmeric. J Mycopathol Res 46:127–128Google Scholar
  102. Taylor CE (1990) Nematode interactions with other pathogens. Ann Appl Biol 116:405–416CrossRefGoogle Scholar
  103. Thiyagarajan SS, Kuppusamy H (2014) Biological control of root knot nematodes in chillies through Pseudomonas fluorescens antagonistic mechanism. J Plant Sci 2(5):152–158Google Scholar
  104. Toohey JI, Netson CD, Krotkov G (1965) Isolation and identification of two phenazines from a strain of Pseudomonas aureofaciens. Can J Bot 43:1055–1062CrossRefGoogle Scholar
  105. Trifonova Z, Tsvetkov I, Bogatzevska N, Batchvarova R (2014) Efficiency of Pseudomonas spp. for biocontrol of the Potato cyst nematode, Globodera rostochiensis (Woll.). Bulgarian J Agric Sci 20(3):666–669Google Scholar
  106. Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48:601–609PubMedPubMedCentralGoogle Scholar
  107. Vallet-Gely I, Opota O, Boniface A, Novikov A, Lemaitre B (2010) A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 12:1666–1679PubMedCrossRefPubMedCentralGoogle Scholar
  108. Vidhyasekharan P (1998) Biological suppression of major diseases of field crops using bacterial antagonists. In: Singh SP, Hussaini SS (eds) Biological suppression of plant disease, phytoparasitic nematodes and weeds. Project Directorate of Biological Control, Bangalore, pp 81–95Google Scholar
  109. Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against the anthracnose pathogen in mango. World J Microbiol Biotechnol 20:235–244CrossRefGoogle Scholar
  110. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Baarbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Medigue C, Broccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679PubMedCrossRefGoogle Scholar
  111. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. Sankari Meena
    • 1
  • M. Annamalai
    • 1
  • S. R. Prabhukarthikeyan
    • 1
  • U. Keerthana
    • 1
  • M. K. Yadav
    • 1
  • P. C. Rath
    • 1
  • M. Jena
    • 1
  • P. Prajna
    • 1
  1. 1.ICAR National Rice Research InstituteCuttackIndia

Personalised recommendations