Advertisement

Current State of Art

  • Arindam ChaudhuriEmail author
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

There has been a wide array of domains ranging from fast-moving consumer products to political events where sentiment analysis has numerous applications. Several large companies have their own in-built capabilities in this area. These innumerable applications and interests have been the driving source towards sentiment analysis research. Several social networks and microblogs have provided strong platforms for users’ information exchange and communication. The social networks and microblogs provide trillions of pieces of multimodal information.

References

  1. 1.
    You, Q., Luo, J.: Towards social imagematics: sentiment analysis in social multimedia. In: Proceedings of the 13th ACM International Workshop on Multimedia Data Mining, pp. 3:1–3:8 (2013)Google Scholar
  2. 2.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th Association for the Advancement in Artificial Intelligence Conference on Weblogs and Social Media, pp. 122–129 (2010)Google Scholar
  3. 3.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  4. 4.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the ACL Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354 (2005)Google Scholar
  5. 5.
    Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, vol. 6, pp. 417–422 (2006)Google Scholar
  6. 6.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inform. Sci. Technol. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  7. 7.
    Naphade, M.R., Lin, C.Y., Smith, J.R., Tseng, B., Basu, S.: Learning to annotate video databases. In: Proceedings of the SPIE Conference on Storage and Retrieval on Media Databases (2002)Google Scholar
  8. 8.
    Ordonez, V., Kulkarni, G., Berg, T.L.: Im2text: describing images using 1 million captioned photographs. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems (2011)Google Scholar
  9. 9.
    Snoek, C.G., Worring, M.: Concept-based video retrieval. Found. Trends Inf. Retrieval 2(4), 215–322 (2008)CrossRefGoogle Scholar
  10. 10.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Proceedings of the European Conference on Computer Vision, vol. 3, pp. 288–301. Springer (2006)Google Scholar
  11. 11.
    Marchesotti, L., Perronnin, F., Larlus, D., Csurka, G.: Assessing the aesthetic quality of photographs using generic image descriptors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1784–1791 (2011)Google Scholar
  12. 12.
    Isola, P., Xiao, J., Torralba, A., Oliva, A.: What makes an image memorable? In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 145–152 (2011)CrossRefGoogle Scholar
  13. 13.
    Jia, J., Wu, S., Wang, X., Hu, P., Cai, L., Tang, J.: Can we understand van Gogh’s mood? Learning to infer affects from images in social networks. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 857–860 (2012)Google Scholar
  14. 14.
    Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Proceedings of the International Conference on Multimedia, pp. 83–92 (2010)Google Scholar
  15. 15.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)CrossRefGoogle Scholar
  16. 16.
    Yanulevskaya, V., Uijlings, J., Bruni, E., Sartori, A., Zamboni, E., Bacci, F., Melcher, D., Sebe, N.: In the eye of the beholder: employing statistical analysis and eye tracking for analysing abstract paintings. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 349–358 (2012)Google Scholar
  17. 17.
    Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Recognizing facial expression: machine learning and application to spontaneous behavior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 568–573 (2005)Google Scholar
  18. 18.
    Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)CrossRefGoogle Scholar
  19. 19.
    Wan, S., Aggarwal, J.: Spontaneous facial expression recognition: a robust metric learning approach. Pattern Recogn. 47(5), 1859–1868 (2014)CrossRefGoogle Scholar
  20. 20.
    Hernandez, J., Hoque, M.E., Drevo, W., Picard, R.W.: Moodmeter: counting smiles in the wild. In: Proceedings of the ACM International Conference on Ubiquitous Computing, pp. 301–310 (2012)Google Scholar
  21. 21.
    Hoque, M.E., Courgeon, M., Martin, J.C., Mutlu, B., Picard, R.W.: Mach: my automated conversation coach. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 697–706 (2013)Google Scholar
  22. 22.
    Guerra, P.H.C., Veloso, A., Meira Jr., W., Almeida, V.: From bias to opinion: a transfer learning approach to real-time sentiment analysis. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2011)Google Scholar
  23. 23.
    Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with label propagation over lexical links and the follower graph. In: Proceedings of the 1st ACL Workshop on Unsupervised Learning in NLP, pp. 53–63 (2011)Google Scholar
  24. 24.
    De Choudhury, M., Counts, S., Horvitz, E.: Major life changes and behavioral markers in social media: Case of child birth. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 1431–1442 (2013)Google Scholar
  25. 25.
    Silva, I.S., Gomide, J., Veloso, A., Meira Jr., W., Ferreira, R.: Effective sentiment stream analysis with self-augmenting training and demand-driven projection. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 475–484 (2011)Google Scholar
  26. 26.
    Hu, X., Tang, L., Tang, J., Liu, H.: Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining, pp. 537–546 (2013)Google Scholar
  27. 27.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Nat. Acad. Sci. U.S. 110(15), 5802–5805 (2013)CrossRefGoogle Scholar
  28. 28.
    Rao, D., Paul, M., Fink, C., Yarowsky, D., Oates, T., Coppersmith, G.: Hierarchical Bayesian models for latent attribute detection in social media. In: Proceedings of the 5th Association for the Advancement in Artificial Intelligence Conference on Weblogs and Social Media, pp. 598–601 (2011)Google Scholar
  29. 29.
    Goel, S., Hofman, J.M., Sirer, M.I.: Who does what on the web: a large-scale study of browsing behavior. In: Proceedings of the 6th Association for the Advancement in Artificial Intelligence Conference on Weblogs and Social Media, pp. 130–137 (2012)Google Scholar
  30. 30.
    Wong, F.M.F., Tan, C.W., Sen, S., Chiang, M.: Quantifying political leaning from tweets and retweets. IEEE Trans. Knowl. Data Eng. 28(8), 2158–2172 (2013)CrossRefGoogle Scholar
  31. 31.
    De Choudhury, M., Counts, S., Gamon, M.: Not all moods are created equal! Exploring human emotional states in social media. In: Proceedings of the 6th Association for the Advancement in Artificial Intelligence Conference on Weblogs and Social Media, pp. 66–73 (2012)Google Scholar
  32. 32.
    Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorporating social networks. arXiv:1109.6018. (2011)Google Scholar
  33. 33.
    Chaudhuri, A.: Sentiment analysis on the multimedia data. Technical Report TH-9086. Samsung R & D Institute Delhi, India (2014)Google Scholar
  34. 34.
    Morency, L.P., Mihalcea, R., Doshi, P.: Towards multimodal sentiment analysis. In: Proceedings of the 13th ACM International Conference on Multimodal Interfaces, ACM, pp. 169–176 (2011)Google Scholar
  35. 35.
    Miller, M., Sathi, C., Wiesenthal, D., Leskovec, J., Potts, C.: Sentiment flow through hyperlink networks. In: Proceedings of the 5th International Association for Advancement in Artificial Intelligence Conference on Weblogs and Social Media, pp. 550–553 (2011)Google Scholar
  36. 36.
    Eyben, F., Wöllmer, M., Schulle, B.: OpenEAR: introducing the munich open-source emotion and affect recognition toolkit. In: Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1–6 (2009)Google Scholar
  37. 37.
    Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A., Morency, L.P.: Context-dependent sentiment analysis in user-generated videos. In: Proceedings of 55th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 873–883 (2017)Google Scholar
  38. 38.
    Eyben, F., Wöllmer, M., Schuller, B., openSMILE: the Munich versatile and fast open-source audio feature extractor. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1459–1462 (2010)Google Scholar
  39. 39.
    Poria, S., Cambria, E., Winterstein, G., Huang, G.B.: Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl. Based Syst. 69(1), 45–63 (2014)CrossRefGoogle Scholar
  40. 40.
    Wöllmer, M., Weninger, F., Knaup, T., Schuller, B., Sun, C., Sagae, K., Morency, L.P.: YouTube movie reviews: sentiment analysis in an audio-visual context. IEEE Intell. Syst. 28(3), 46–53 (2013)CrossRefGoogle Scholar
  41. 41.
    Rosas, V.P., Mihalcea, R., Morency, L.: Multimodal sentiment analysis of spanish online videos. IEEE Intell. Syst. 28(3), 38–45 (2013)CrossRefGoogle Scholar
  42. 42.
    Zadeh, A.: Micro-opinion sentiment intensity analysis and summarization in online videos. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 587–591 (2015)Google Scholar
  43. 43.
    Ellis, J.G., Jou, B., Chang, S.F.: Why we watch the news: a dataset for exploring sentiment in broadcast video news. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 104–111 (2014)Google Scholar
  44. 44.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)Google Scholar
  45. 45.
    McDuff, D., Kaliouby, R.E., Kodra, E., Picard, R.: Measuring voter’s candidate preference based on affective responses to election debates. In: Proceedings of the Conference on Affective Computing and Intelligent Interaction, pp. 369–374 (2013)Google Scholar
  46. 46.
    Madzlan, N.A., Han, J.G., Bonin, F., Campbell, N.: Automatic recognition of attitudes in video blogs-prosodic and visual feature analysis, INTERSPEECH, pp. 1826–1830 (2014)Google Scholar
  47. 47.
    Siddiquie, B., Chisholm, D., Divakaran, A.: Exploiting multimodal affect and semantics to identify politically persuasive web videos. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 203–210 (2015)Google Scholar
  48. 48.
    Lo, S.L., Cambria, E., Chiong, R., Cornforth, D.: Multilingual sentiment analysis: from formal to informal and scarce resource languages. Artif. Intell. Rev. 48(4), 499–527 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Samsung R & D Institute DelhiNoidaIndia

Personalised recommendations