Advertisement

Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications

  • Clarissa Hamaio Okino-Delgado
  • Mirella Rossitto Zanutto-Elgui
  • Débora Zanoni do Prado
  • Milene Stefani Pereira
  • Luciana Francisco Fleuri
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 10)

Abstract

Enzymes play an important role for degradation of various xenobiotic compounds. In this chapter, we summarize the role of various enzymes including oxidoreductases, monooxygenases, dioxygenases, peroxidases, and laccases for bioremediation of various xenobiotic compounds. Microbial oxidoreductases are able to degrade natural and artificial pollutants, reverse toxicity caused by xenobiotics, and reduce heavy metals, through their oxi-reduction capacity. Monooxygenases and dioxygenases are able to play a central role in the degradation and detoxification of aromatic compounds through hydroxylation and ring cleavage. Peroxidases act in bioremediation processes due to their thermostability and capacity to oxidize a wide range of substrates. Laccases can act on a variety of pollutants including petroleum derivatives (PHAs), paints, plastics, dyes, estrogenic substances, and paper via oxidative reactions, decarboxylation, and demethylation and can oxidize phenols, polyphenols, metals, polyamines, and aryl diamines groups and also act on lignin degradation and on azo dyes.

Keywords

Monooxygenase Dioxygenase Laccases Peroxidase 

References

  1. Abdel-Hamid, A. M., Solbiati, J. O., & Cann, I. K. O. (2013). Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology, 82, 1–28.  https://doi.org/10.1016/B978-0-12-407679-2.00001-6.CrossRefGoogle Scholar
  2. Abidi, M., Iram, A., Furkan, M., & Naeem, A. (2017). Secondary structural alterations in glucoamylase as an influence of protein aggregation. International Journal of Biological Macromolecules, 98, 459–468.CrossRefGoogle Scholar
  3. Abu-Omar, M. M., Loaiza, A., & Hontzeas, N. (2005). Reaction mechanisms of mononuclear non-heme iron oxygenases. Chemical Reviews, 105, 2227–2252.  https://doi.org/10.1021/cr040653o.CrossRefGoogle Scholar
  4. Ahuja, S. K., Ferreira, G. M., & Moreira, A. R. (2004). Utilization of enzymes for environmental applications. Critical Reviews in Biotechnology, 24, 125–154.  https://doi.org/10.1080/07388550490493726.CrossRefGoogle Scholar
  5. Alcalde, M., Ferrer, M., Plou, F. J., & Ballesteros, A. (2006). Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends in Biotechnology, 24, 281–287.  https://doi.org/10.1016/j.tibtech.2006.04.002.CrossRefGoogle Scholar
  6. Arora, P. K., Kumar, M., Chauhan, A., Raghava, G. P. S., & Jain, R. K. (2009). OxDBase: A database of oxygenases involved in biodegradation. BMC Research Notes, 2, 67.  https://doi.org/10.1186/1756-0500-2-67.CrossRefGoogle Scholar
  7. Arora, N. K., Khare, E., Singh, S., & Maheshwari, D. K. (2010). Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under ex planta conditions. World Journal of Microbiology and Biotechnology, 26, 811–816.  https://doi.org/10.1007/s11274-009-0237-6.CrossRefGoogle Scholar
  8. Ashe, B., Nguyen, L. N., Hai, F. I., Lee, D.-J., van de Merwe, J. P., Leusch, F. D. L., Price, W. E., & Nghiem, L. D. (2016). Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. International Biodeterioration and Biodegradation, Challenges in Environmental Science and Engineering – 2015, 113, 169–176.  https://doi.org/10.1016/j.ibiod.2016.04.027.CrossRefGoogle Scholar
  9. ATSDR. (2016). Minimal risk level. Agency for Toxic Substances and Disease Registry.Google Scholar
  10. Baciocchi, E., Gerini, M. F., Harvey, P. J., Lanzalunga, O., & Prosperi, A. (2001). Kinetic deuterium isotope effect in the oxidation of veratryl alcohol promoted by lignin peroxidase and chemical oxidants. Journal of the Chemical Society, Perkin Transactions, 20, 1512–1515.  https://doi.org/10.1039/B104467M.CrossRefGoogle Scholar
  11. Bajaj, A., Pathak, A., Mudiam, M. R., Mayilraj, S., & Manickam, N. (2010). Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. Journal of Applied Microbiology, 109, 2135–2143.  https://doi.org/10.1111/j.1365-2672.2010.04845.x.CrossRefGoogle Scholar
  12. Balali-Mood, M., & Abdollahi, M. (2014) Basic and clinical toxicology of organophosphorus compounds. London: Springer International Publishing, ISBN 978-1-4471-5625-3.Google Scholar
  13. Bansal, N., & Kanwar, S. S. (2013). Peroxidase(s) in environment protection. Scientific World Journal, 2013, 714639.  https://doi.org/10.1155/2013/714639.CrossRefGoogle Scholar
  14. Baptista, N. M., de, Q., dos Santos, A. C., Arruda, F. V. F., & de Gusmão, N. B. (2012). Produção das Enzimas Lignina Peroxidase e Lacase por Fungos Filamentosos. Scientia Plena, 8, 019904.Google Scholar
  15. Bensaude-Vincent, B., & Stengers, I. (1992). História da Química (pp. 176–177). Lisboa: Piaget.Google Scholar
  16. Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Science Total Environment, 576, 646–659.  https://doi.org/10.1016/j.scitotenv.2016.10.137.CrossRefGoogle Scholar
  17. Bollag, J.-M. (1998). Use of plant material for the removal of pollutants by polymerization and binding to humic substances (p. 135). University Park: Center for Bioremediation and Detoxification, Environmental Resources Research Institute,Google Scholar
  18. Borsonelo, E. C., & Galduróz, J. C. (2008). The role of polyunsaturated fatty acids (PUFAs) in development, aging and substance abuse disorders: Review and propositions. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 78, 237–245.  https://doi.org/10.1016/j.plefa.2008.03.005.CrossRefGoogle Scholar
  19. Brown, L. D., Cologgi, D. L., Gee, K. F., & Ulrich, A. C. (2017). Bioremediation of oil spills on land. Chapter 12. Oil Spill Science and Technology. 2nd ed. Gulf Professional Publishing, Boston, 699–729.Google Scholar
  20. Bugg, T. D. H. (2003). Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron, 59, 7075–7101.CrossRefGoogle Scholar
  21. Bugg, T. D., & Ramaswamy, S. (2008). Non-heme iron-dependent dioxygenases: Unravelling catalytic mechanisms for complex enzymatic oxidations. Current Opinion in Chemical Biology, Biocatalysis and Biotransformation/Bioinorganic Chemistry, 12, 134–140.  https://doi.org/10.1016/j.cbpa.2007.12.007.CrossRefGoogle Scholar
  22. Cabana, H., Jiwan, J.-L. H., Rozenberg, R., Elisashvili, V., Penninckx, M., Agathos, S. N., & Jones, J. P. (2007). Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere, 67, 770–778.  https://doi.org/10.1016/j.chemosphere.2006.10.037.CrossRefGoogle Scholar
  23. Cameron, M. D., Timofeevski, S., & Aust, S. D. (2000). Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology, 54(6), 751–758.CrossRefGoogle Scholar
  24. Canfora, L., Iamarino, G., Rao, M. A., & Gianfreda, L. (2008). Oxidative transformation of natural and synthetic phenolic mixtures by trametes versicolor laccase. Journal of Agricultural and Food Chemistry, 56, 1398–1407.  https://doi.org/10.1021/jf0728350.CrossRefGoogle Scholar
  25. Chakraborty, J., Jana, T., Saha, S., & Dutta, T. K. (2014). Ring-hydroxylating oxygenase database: A database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds. Environmental Microbiology Reports, 6, 519–523. Accessed 6 May 2018.CrossRefGoogle Scholar
  26. Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Process Biochemistry, 45, 507–513.  https://doi.org/10.1016/j.procbio.2009.11.009.CrossRefGoogle Scholar
  27. Chang, Y. C., Choi, D., Takamizawa, K., & Kikuchi, S. (2014). Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology, 152, 429–436.  https://doi.org/10.1016/j.biortech.2013.11.032.CrossRefGoogle Scholar
  28. Cirino, P. C., & Arnold, F. H. (2002). Protein engineering of oxygenases for biocatalysis. Current Opinion in Chemical Biology, 6, 130–135.  https://doi.org/10.1016/S1367-5931(02)00305-8.CrossRefGoogle Scholar
  29. Cochrane, R. V. K., & Vederas, J. C. (2014). Highly selective but multifunctional oxygenases in secondary metabolism. Accounts of Chemical Research, 47, 3148–3161.  https://doi.org/10.1021/ar500242c.CrossRefGoogle Scholar
  30. Cotârlet, M., Negoita, T. G., Bahrim, G. E., & Stougaard, P. (2011). Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica. Brazilian Journal of Microbiology, 42, 868–877. ISSN 1517-8382.CrossRefGoogle Scholar
  31. D’Annibale, A., Ricci, M., Quaratino, D., Federici, F., & Fenice, M. (2004). Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Research in Microbiology, 155, 596–603.  https://doi.org/10.1016/j.resmic.2004.04.009.CrossRefGoogle Scholar
  32. Dai Prá, M. A., Corrêa, E. K., Corrêa, L. B., Lobo, M. S., Sperotto, L., & Mores, E. (2009). Compostagem como alternativa para gestão ambiental na produção de suínos (pp. 144–148). Porto Alegre: Editora Evangraf Ltda.Google Scholar
  33. Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810.  https://doi.org/10.4061/2011/941810.CrossRefGoogle Scholar
  34. Dec, J., & Bollag, J. M. (1994). Use of plant material for the decontamination of water polluted with phenols. Biotechnology and Bioengineering, 44, 1132–1139.  https://doi.org/10.1002/bit.260440915.CrossRefGoogle Scholar
  35. Drewes, J. E., Li, D., Regnery, J., Alidina, M., Wing, A., & Hoppe-Jones, C. (2014). Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 69, 628–633.  https://doi.org/10.2166/wst.2013.750.CrossRefGoogle Scholar
  36. Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B: Environmental, 28, 83–99.  https://doi.org/10.1016/S0926-3373(00)00168-5.CrossRefGoogle Scholar
  37. Efimov, I., Basran, J., Thackray, S. J., Handa, S., Mowat, C. G., & Raven, E. L. (2011). Structure and reaction mechanism in the heme dioxygenases. Biochemistry (Mosc), 50, 2717–2724.  https://doi.org/10.1021/bi101732n.CrossRefGoogle Scholar
  38. Ely, C., Kempka, A. P., & Skoronski, E. (2016). Aplicação de Peroxidases no Tratamento de Efluentes. Revista Virtual de Química, 8, 1537.CrossRefGoogle Scholar
  39. Empresa Brasileira de Pesquisa. Embrapa. (2004). Production of ligninolytic enzymes by fungi isolated from soils under irrigated rice cultivation. Boletim de pesquisa e desenvolvimento. Available in https://www.infoteca.cnptia.embrapa.br/bitstream/doc/14511/1/boletim18.pdf.
  40. Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2016). Lignin peroxidase functionalities and prospective applications. Microbiology Open, 6.  https://doi.org/10.1002/mbo3.394.CrossRefGoogle Scholar
  41. Farnet, A. M., Gil, G., Ruaudel, F., Chevremont, A. C., & Ferre, E. (2009). Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean sclerophyllous litter. Geoderma, 149, 267–271.  https://doi.org/10.1016/j.geoderma.2008.12.011.CrossRefGoogle Scholar
  42. Farnet, A. M., Chevremont, A. C., Gil, G., Gastaldi, S., & Ferre, E. (2011). Alkylphenol oxidation with a laccase from a white-rot fungus: Effects of culture induction and of ABTS used as a mediator. Chemosphere, 82, 284–289.  https://doi.org/10.1016/j.chemosphere.2010.10.001.CrossRefGoogle Scholar
  43. Fetzner, S. (2012). Ring-cleaving dioxygenases with a cupin fold. Applied and Environmental Microbiology, 78, 2505–2514.  https://doi.org/10.1128/AEM.07651-11.CrossRefGoogle Scholar
  44. Fetzner, S., & Lingens, F. (1994). Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications. Microbiological Reviews, 58, 641–685.Google Scholar
  45. Fischer, K., & Majewsky, M. (2014). Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Applied Microbiology and Biotechnology, 98, 6583–6597.  https://doi.org/10.1007/s00253-014-5826-0.CrossRefGoogle Scholar
  46. Galán, B., Díaz, E., Prieto, M. A., & García, J. L. (2000). Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: A prototype of a new Flavin:NAD(P)H reductase subfamily. Journal of Bacteriology, 182, 627–636.CrossRefGoogle Scholar
  47. Gao, Y., Chen, S., Hu, M., Hu, Q., Luo, J., & Li, Y. (2012). Purification and characterization of a novel Chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One, 7, 38137.  https://doi.org/10.1371/journal.pone.0038137.CrossRefGoogle Scholar
  48. García-Galán, M. J., Rodríguez-Rodríguez, C. E., Vicent, T., Caminal, G., Díaz-Cruz, M. S., & Barceló, D. (2011). Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS. Science Total Environment, 409, 5505–5512.  https://doi.org/10.1016/j.scitotenv.2011.08.022.CrossRefGoogle Scholar
  49. Gasser, C. A., Yu, L., Svojitka, J., Wintgens, T., Ammann, E. M., Shahgaldian, P., Corvini, P. F.-X., & Hommes, G. (2014). Advanced enzymatic elimination of phenolic contaminants in wastewater: A nano approach at field scale. Applied Microbiology and Biotechnology, 98, 3305–3316.  https://doi.org/10.1007/s00253-013-5414-8.CrossRefGoogle Scholar
  50. Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32, 147–156.  https://doi.org/10.1016/j.nbt.2014.01.001.CrossRefGoogle Scholar
  51. Ghafil, J. A., Hassan, S. S., & Zgair, A. K. (2016). Use of immobilized lipase in cleaning up soil contaminated with oil. World Journal of Experimental Medicine, 4, 53–57. ISSN: 2313-3937.Google Scholar
  52. Ghashghavi, M., Jetten, M. S. M., & Lüke, C. (2017). Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express, 7.  https://doi.org/10.1186/s13568-017-0466-2.
  53. Giandreda, L., & Rao, M. A. (2011). Stabilized enzymes as synthetic complexes. In R. P. Dick (Ed.), Methods in soil enzymology (pp. 319–370). Madison: Soil Science Society of America.Google Scholar
  54. Gianfreda, L., & Bollag, J.-M. (2002). Isolated enzymes for the transformation and detoxification of organic pollutants. New York: Marcel Dekker.CrossRefGoogle Scholar
  55. Gianfreda, L., Xu, F., & Bollag, J.-M. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–26.  https://doi.org/10.1080/10889869991219163.CrossRefGoogle Scholar
  56. Gianfreda, P. L., Iamarino, G., Scelza, R., & Rao, M. A. (2006). Oxidative catalysts for the transformation of phenolic pollutants: A brief review. Biocatalysis and Biotransformation, 24, 177–187.  https://doi.org/10.1080/10242420500491938.CrossRefGoogle Scholar
  57. Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11, 236–243.CrossRefGoogle Scholar
  58. Grosse, S., Laramee, L., Wendlandt, K. D., McDonald, I. R., Miguez, C. B., & Kleber, H. P. (1999). Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Applied and Environmental Microbiology, 65, 3929–3935.Google Scholar
  59. Guzik, U., Hupert-Kocurek, K., Sitnik, M., & Wojcieszyńska, D. (2013). High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie Van Leeuwenhoek, 103, 1297–1307.  https://doi.org/10.1007/s10482-013-9910-8.CrossRefGoogle Scholar
  60. Halmi, M. I. E., Khayat, M. E., Gunasekaran, B., Masdor, N. A., & Rahman, M. F. A. (2016). Near real-time biomonitoring of copper from an industrial complex effluent discharge site using a plant protease inhibitive assay. Bioremediation Science Technology Research, 4, 10–13. ISSN: 2289-5892.Google Scholar
  61. Hocevar, L., Soares, V. R. B., Oliveira, F. S., Korn, M. G. A., & Teixeira, L. S. G. (2012). Application of multivariate analysis in mid-infrared spectroscopy as a tool for the evaluation of waste frying oil blends. Journal of the American Oil Chemists’ Society, 89(5), 781–786.Google Scholar
  62. Hofrichter, M. (2002). Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, Recent Advances in Lignin Biodegradation, 30, 454–466.  https://doi.org/10.1016/S0141-0229(01)00528-2.CrossRefGoogle Scholar
  63. Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Critical Reviews in Biotechnology, 26, 201–221.  https://doi.org/10.1080/07388550600969936.CrossRefGoogle Scholar
  64. Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Reviews in Environmental Science and Biotechnology, 9, 117–140.  https://doi.org/10.1007/s11157-009-9184-9.CrossRefGoogle Scholar
  65. Iyer, R., Iken, B., & Damania, A. (2013). A comparison of organophosphate degradation genes and bioremediation applications – Minireview. Environmental Microbiology Reports, 5, 787–798.  https://doi.org/10.1111/1758-2229.12095.CrossRefGoogle Scholar
  66. Iyer, R., Iken, B., & Leon, A. (2016). Characterization and comparison of putative Stenotrophomonas maltophilia methyl parathion hydrolases. Bioremediation Journal, 20, 71–79.  https://doi.org/10.1080/10889868.2015.1114462.CrossRefGoogle Scholar
  67. Jakovljević, V. D., & Vrvić, M. M. (2016). Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry. Saudi Journal of Biological Science, 25, 529.  https://doi.org/10.1016/j.sjbs.2016.01.020.CrossRefGoogle Scholar
  68. Jakovljević, V. D., & Vrvić, M. M. (2017). Penicillium verrucosum as promising candidate for bioremediation of environment contaminated with synthetic detergent at high concentration. Applied Biochemistry and Microbiology, 53, 368–373.  https://doi.org/10.1134/S0003683817030164.CrossRefGoogle Scholar
  69. Janarthanan, R., Prabhakaran, P., & Ayyasamy, P. M. (2014). Bioremediation of vegetable wastes through biomanuring and enzyme production. International Journal of Current Microbiology and Applied Sciences, 3, 89–100. ISSN: 2319-7706.Google Scholar
  70. Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90, 1291–1305.  https://doi.org/10.1016/j.biochi.2008.03.004.CrossRefGoogle Scholar
  71. Jardine, J. L., Stoychev, S., Mavumengwana, V., & Ubomba-Jaswa, E. (2018). Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography – Tandem mass spectrometry (Lc-Ms/Ms). Journal of Environmental Management, 223, 787–796.  https://doi.org/10.1016/j.jenvman.2018.06.089.CrossRefGoogle Scholar
  72. Ju, K.-S., & Parales, R. E. (2011). Evolution of a new bacterial pathway for 4-nitrotoluene degradation. Molecular Microbiology, 82, 355–364.  https://doi.org/10.1111/j.1365-2958.2011.07817.x.CrossRefGoogle Scholar
  73. Kapoor, M., & Rajagopal, R. (2011). Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorus hydrolase. International Biodeterioration and Biodegradation, 65, 896–901.  https://doi.org/10.1016/j.ibiod.2010.12.017.CrossRefGoogle Scholar
  74. Karam, J., & Nicell, J. A. (1997). Potential applications of enzymes in waste treatment. Journal of Chemical Technology and Biotechnology, 69, 141–153.  https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U.CrossRefGoogle Scholar
  75. Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011.  https://doi.org/10.4061/2011/805187.CrossRefGoogle Scholar
  76. Karimi, M., & Biria, D. (2016). The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes. Chemosphere, 152, 166–172.  https://doi.org/10.1016/j.chemosphere.2016.02.120.CrossRefGoogle Scholar
  77. Khatoon, N., Jamal, A., & Ali, M. I. (2017). Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment. International Journal of Biological Macromolecules, 105, 9–16.  https://doi.org/10.1016/j.ijbiomac.2017.06.047.CrossRefGoogle Scholar
  78. Kim, G.-Y., Lee, K.-B., Cho, S.-H., Shim, J., & Moon, S.-H. (2005). Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. Journal of Hazardous Materials, 126, 183–188.  https://doi.org/10.1016/j.jhazmat.2005.06.023.CrossRefGoogle Scholar
  79. Kobakhidze, A., Elisashvili, V., Corvini, P. F.-X., & Čvančarová, M. (2018). Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotechnology, 43, 44–52.  https://doi.org/10.1016/j.nbt.2017.08.008.CrossRefGoogle Scholar
  80. Koua, D., Cerutti, L., Falquet, L., Sigrist, C. J. A., Theiler, G., Hulo, N., & Dunand, C. (2009). PeroxiBase: A database with new tools for peroxidase family classification. Nucleic Acids Research, 37, D261–D266.  https://doi.org/10.1093/nar/gkn680.CrossRefGoogle Scholar
  81. Kovalchuk, I. (2010). Multiple roles of radicals in plants. In: GUPTA, S.D. reactive oxygen species and antioxidants in higher plants (pp. 31–44). Enfield: Science Publishers.CrossRefGoogle Scholar
  82. Kuddus, M., & Ramteke, P. W. (2012). Recent developments in production and biotechnological applications of cold-active microbial proteases. Critical Reviews in Microbiology, 38, 330–338.  https://doi.org/10.3109/1040841X.2012.678477.CrossRefGoogle Scholar
  83. Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 10, 1.  https://doi.org/10.4061/2011/280696.CrossRefGoogle Scholar
  84. Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare, S. K., & Negi, S. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresource Technology, 120, 300–304.  https://doi.org/10.1016/j.biortech.2012.06.018.CrossRefGoogle Scholar
  85. Kumar, V., Singh, S., Manhas, A., Negi, P., Singla, S., Kaur, P., Bhadrecha, P., Datta, S., Kalia, A., Joshi, R., Singh, J., Sharma, S., & Upadhyay, N. (2014). Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum-contaminated soil. Oriental Journal of Chemistry, 30, 1771–1776.  https://doi.org/10.13005/ojc/300436.CrossRefGoogle Scholar
  86. Lee, J. H., Okuno, Y., & Cavagnero, S. (2014). Sensitivity enhancement in solution NMR: Emerging ideas and new frontiers. Journal of Magnetic Resonance San Diego California 1997, 241, 18–31.  https://doi.org/10.1016/j.jmr.2014.01.005.CrossRefGoogle Scholar
  87. Legerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases – A mini-review. Nova Biotechnology Chimica, 15, 90–106.  https://doi.org/10.1515/nbec-2016-0010.CrossRefGoogle Scholar
  88. Leicester, H. M. (1971). The historical background of chemistry. Chelmsford: Courier Corporation.Google Scholar
  89. Leitgeb, S., & Nidetzky, B. (2008). Structural and functional comparison of 2-His-1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Biochemical Society Transactions, 36, 1180–1186.  https://doi.org/10.1042/BST0361180.CrossRefGoogle Scholar
  90. Li, Y., Xu, J., Zhang, L., Ding, Z., Gu, Z., & Shi, G. (2017). Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch. Carbohydrate Research, 446–447, 93–100.  https://doi.org/10.1016/j.carres.2017.05.016.CrossRefGoogle Scholar
  91. Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S., & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme and Microbial Technology, 44, 426–433.  https://doi.org/10.1016/j.enzmictec.2009.02.008.CrossRefGoogle Scholar
  92. Maciel, H. P. F., Gouvêa, C. M. C. P., & Pastore, G. M. (2007). Extração e caracterização parcial de peroxidase de folhas de Copaifera langsdorffii Desf. Food Science and Technology, 27, 221–225.  https://doi.org/10.1590/S0101-20612007000200002.CrossRefGoogle Scholar
  93. Madigan, M. T., et al. (2016). Brock biology of microbiology (14th ed.). Porto Alegre: Artmed.Google Scholar
  94. Mahmood, M. H., Yang, Z., Thanoon, R. D., Makky, E. A., & Rahim, M. H. A. (2017). Lipase production and optimization from bioremediation of disposed engine oil. Journal of Chemical and Pharmaceutical Research, 9, 26–36. ISSN:0975-7384.Google Scholar
  95. Mai, C., Schormann, W., Milstein, O., & Hüttermann, A. (2000). Enhanced stability of laccase in the presence of phenolic compounds. Applied Microbiology and Biotechnology, 54, 510–514.CrossRefGoogle Scholar
  96. Majumder, R., Banik, S. P., Ramrakhiani, L., & Khowala, S. (2014). Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: Optimization approach based on statistical design and characterization for diverse applications. Journal of Chemical Technology & Biotechnology, 90, 1886.  https://doi.org/10.1002/jctb.4500.CrossRefGoogle Scholar
  97. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G., & Vicent, T. (2010). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 176, 836–842.  https://doi.org/10.1016/j.jhazmat.2009.11.112.CrossRefGoogle Scholar
  98. Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.Google Scholar
  99. Mewis, K., Armstrong, Z., Song, Y. C., Baldwin, S. A., Withers, S. G., & Hallam, S. J. (2013). Biomining active cellulases from a mining bioremediation system. Journal of Biotechnology, 167, 462.  https://doi.org/10.1016/j.jbiotec.2013.07.015.CrossRefGoogle Scholar
  100. Mierzecki, R. (1991). The historical development of chemical concepts. Varsóvia/Dordrecht: Polish Scientific Publishers/Kluwer Academic Publishers.Google Scholar
  101. Ministério do Meio Ambiente do Brasil – MMA. (1981). Política nacional do meio ambiente, lei número 6.938/81.Google Scholar
  102. Miranda, A. S., Miranda, L. S. M., & Souza, R. O. M. A. (2015). Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances.  https://doi.org/10.1016/j.biotechadv.2015.02.015.CrossRefGoogle Scholar
  103. Mita, L., Sica, V., Guida, M., Nicolucci, C., Grimaldi, T., Caputo, L., Bianco, M., Rossi, S., Bencivenga, U., Eldin, M. S. M., Tufano, M. A., Mita, D. G., & Diano, N. (2010). Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors. Journal of Molecular Catalysis B: Enzymatic, 62(2), 133–141.CrossRefGoogle Scholar
  104. Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58, 1097–1105.  https://doi.org/10.1016/j.chemosphere.2004.09.070.CrossRefGoogle Scholar
  105. Mukherjee, P., & Roy, P. (2013). Copper enhanced monooxygenase activity and FT-IR spectroscopic characterisation of biotransformation products in trichloroethylene degrading bacterium: Stenotrophomonas maltophilia PM102. BioMed Research International, 2013.  https://doi.org/10.1155/2013/723680.Google Scholar
  106. Mulo, P., & Medina, M. (2017). Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: Structural, functional, and physiological implications. Photosynthesis Research, 134, 265–280.  https://doi.org/10.1007/s11120-017-0372-0.CrossRefGoogle Scholar
  107. Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45–58.  https://doi.org/10.1016/j.resconrec.2012.06.005.CrossRefGoogle Scholar
  108. Muthukamalam, S., Sivagangavathi, S., Dhrishya, D., & Sudha Rani, S. (2017). Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Brazilian Journal of Microbiology, 48, 637–647.  https://doi.org/10.1016/j.bjm.2017.02.007.CrossRefGoogle Scholar
  109. Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-Pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution Barking Essex 1987, 234, 190–213.  https://doi.org/10.1016/j.envpol.2017.11.060.CrossRefGoogle Scholar
  110. Nelson, D. L., & Cox, M. M. (1970). Lehninger principles of biochemistry (6th ed.). New York: W.H. Freeman. ISBN 9781429234146.Google Scholar
  111. Newman, L. A., Doty, S. L., Gery, K. L., Heilman, P. E., Muiznieks, I., Shang, T. Q., Siemieniec, S. T., Strand, S. E., Wang, X., Wilson, A. M., & Gordon, M. P. (1998). Phytoremediation of organic contaminants: A review of phytoremediation research at the University of Washington. Journal of Soil Contamination, 7, 531–542.  https://doi.org/10.1080/10588339891334366.CrossRefGoogle Scholar
  112. Nguyen, L. N., Hai, F. I., Price, W. E., Leusch, F. D. L., Roddick, F., McAdam, E. J., Magram, S. F., & Nghiem, L. D. (2014). Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. International of Biodeterioration and Biodegradation, Challenges in Environmental Science and Engineering, CESE 2013, 95, 25–32.  https://doi.org/10.1016/j.ibiod.2014.05.017.CrossRefGoogle Scholar
  113. Okino-Delgado, C. H., Prado, D. Z., Facanali, R., Marques, M. M. O., Nascimento, A. S., Fernandes, C. J. C., Zambuzzi, W. F., & Fleuri, L. F. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLoS One, 12, 1–17.  https://doi.org/10.1371/journal.pone.0186246.CrossRefGoogle Scholar
  114. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119–131.Google Scholar
  115. Park, J.-W., Park, B.-K., & Kim, J.-E. (2006). Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots. Archives of Environmental Contamination and Toxicology, 50, 191–195.  https://doi.org/10.1007/s00244-004-0119-8.CrossRefGoogle Scholar
  116. Peixoto, R. S., Vermelho, A. B., & Rosado, A. S. (2011). Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Research, 2011, 1.  https://doi.org/10.4061/2011/475193.CrossRefGoogle Scholar
  117. Peng, D., Lan, Z., Guo, C., Yang, C., & Dang, Z. (2013). Application of cellulase for the modification of corn stalk: Leading to oil sorption. Bioresource Technology, 137, 414–418.  https://doi.org/10.1016/j.biortech.2013.03.178.CrossRefGoogle Scholar
  118. Pereira, A. R. B., & Freitas, D. A. F. (2012). Uso de microorganismos para a biorremediação de ambientes impactados. 6, 975–1006.Google Scholar
  119. Pillai, P., & Archana, G. (2008). Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Applied Microbiology Biotechnology, 78, 643–650.  https://doi.org/10.1007/s00253-008-1355-z.CrossRefGoogle Scholar
  120. Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource Technology, 102, 10987–10995.  https://doi.org/10.1016/j.biortech.2011.08.055.CrossRefGoogle Scholar
  121. Rao, M. A., Scelza, R., Acevedo, F., Diez, M. C., & Gianfreda, L. (2014). Enzymes as useful tools for environmental purposes. Chemosphere, 107, 145–162.  https://doi.org/10.1016/j.chemosphere.2013.12.059.CrossRefGoogle Scholar
  122. Regalado, C., García-Almendárez, B. E., & Duarte-Vázquez, M. A. (2004). Biotechnological applications of peroxidases. Phytochemistry Reviews, 3(1–2), 243–256.CrossRefGoogle Scholar
  123. Riffaldi, R., Levi-Minzi, R., Cardelli, R., & Palumbo, S. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170, 3–15.  https://doi.org/10.1007/s11270-006-6328-1.CrossRefGoogle Scholar
  124. Rigo, E., Rigoni, R. E., Lodea, P., de Oliveira, D., Freire, D. M. G., & Di Luccio, M. (2008). Application of different lipases as Pretreatment in anaerobic treatment of wastewater. Environmental Engineering Science, 25(9), 1243–1248.CrossRefGoogle Scholar
  125. Roccatano, D. (2015). Structure, dynamics, and function of the monooxygenase P450 BM-3: Insights from computer simulations studies. Journal of Physics. Condensed Matter, 27, 273102.  https://doi.org/10.1088/0953-8984/27/27/273102.CrossRefGoogle Scholar
  126. Rodrigues, T. A. [UNESP, (2003)]. Estudo da interação biosortiva entre o corante reativo procion blue MXG e as linhagens CCB 004, CCB 010 e CCB 650 de Pleurotus ostreatus paramorfogênico. Aleph xv, 101 f.: il.Google Scholar
  127. Rodríguez-Rodríguez, C. E., García-Galán, M. A. J., Blánquez, P., Díaz-Cruz, M. S., Barceló, D., Caminal, G., & Vicent, T. (2012). Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 213–214, 347–354.  https://doi.org/10.1016/j.jhazmat.2012.02.008.CrossRefGoogle Scholar
  128. Rubilar, O., Diez, M. C., & Gianfreda, L. (2008). Transformation of chlorinated phenolic compounds by white rot fungi. Critical Reviews in Environmental Science and Technology, 38, 227–268.  https://doi.org/10.1080/10643380701413351.CrossRefGoogle Scholar
  129. Ruiz-Dueñas, F. J., Morales, M., Pérez-Boada, M., Choinowski, T., Martínez, M. J., Piontek, K., & Martínez, A. T. (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: A site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry (Mosc), 46, 66–77.  https://doi.org/10.1021/bi061542h.CrossRefGoogle Scholar
  130. Sakurai, T., & Kataoka, K. (2007). Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chemical Record New York, 7, 220–229.  https://doi.org/10.1002/tcr.20125.CrossRefGoogle Scholar
  131. Sánchez-Porro, C., Martın, S., Mellado, E., & Ventosa, A. (2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94, 295–300. PMID:12534822.CrossRefGoogle Scholar
  132. Sharma, A., Tewari, R., Rana, S. S., Soni, R., & Soni, S. K. (2016). Cellulases: Classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology, 179, 1346.  https://doi.org/10.1007/s12010-016-2070-3.CrossRefGoogle Scholar
  133. Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22.  https://doi.org/10.1016/j.jenvman.2017.12.075.CrossRefGoogle Scholar
  134. Shen, B., & Hutchinson, C. R. (1993). Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science, 262, 1535–1540.CrossRefGoogle Scholar
  135. Shraddha, Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Research, 2011, 1.  https://doi.org/10.4061/2011/217861.CrossRefGoogle Scholar
  136. Shukor, Y., Baharom, N. A., Rahman, F. A., Abdullah, M. P., Shamaan, N. A., & Syed, M. A. (2006). Development of a heavy metals enzymatic-based assay using papain. Analytica Chimica Acta, 566, 283–289.  https://doi.org/10.1016/j.aca.2006.03.001.CrossRefGoogle Scholar
  137. Silva, M. C., Torres, J. A., Castro, A. A., da Cunha, E. F. F., Alves de Oliveira, L. C., Corrêa, A. D., & Ramalho, T. C. (2016). Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: Affinity and reactivity toward a bioremediation catalyst. Journal of Biomolecular Structure & Dynamics, 34, 1839–1848.  https://doi.org/10.1080/07391102.2015.1063456.CrossRefGoogle Scholar
  138. Sivaperumal, P., Kamala, K., & Rajaram, R. (2017). Bioremediation of industrial waste through enzyme producing marine microorganisms. Advances in Food and Nutrition Research, 80, 165–179.  https://doi.org/10.1016/bs.afnr.2016.10.006.CrossRefGoogle Scholar
  139. Souza, A. F., & Rosado, F. R. (2009). Utilização de Fungos Basidiomicetes em Biodegradação de Efluentes Têxteis. Revista Em Agronegócio E Meio Ambiente, 2, 121–139.Google Scholar
  140. Stadlmair, L. F., Letzel, T., Drewes, J. E., & Graßmann, J. (2017). Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. Chemosphere, 174, 466–477.  https://doi.org/10.1016/j.chemosphere.2017.01.140.CrossRefGoogle Scholar
  141. Stadlmair, L. F., Letzel, T., & Graßmann, J. (2018). Monitoring enzymatic degradation of emerging contaminants using a chip-based robotic nano-ESI-MS tool. Analytical and Bioanalytical Chemistry, 410, 27–32.  https://doi.org/10.1007/s00216-017-0729-4.CrossRefGoogle Scholar
  142. Tang, L., Zeng, G.-M., Shen, G.-L., Zhang, Y., Huang, G.-H., & Li, J.-B. (2006). Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta, 579, 109–116.  https://doi.org/10.1016/j.aca.2006.07.021.CrossRefGoogle Scholar
  143. ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot Fungi. Chemical Reviews, 101, 3397–3414.  https://doi.org/10.1021/cr000115l.CrossRefGoogle Scholar
  144. Thackray, S. J., Mowat, C. G., & Chapman, S. K. (2008). Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochemical Society Transactions, 36, 1120–1123.  https://doi.org/10.1042/BST0361120.CrossRefGoogle Scholar
  145. Touahar, I. E., Haroune, L., Ba, S., Bellenger, J.-P., & Cabana, H. (2014). Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Science of Total Environment, 481, 90–99.  https://doi.org/10.1016/j.scitotenv.2014.01.132.CrossRefGoogle Scholar
  146. Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. Journal of Water Environment Technology, 8, 125–140.  https://doi.org/10.2965/jwet.2010.125.CrossRefGoogle Scholar
  147. Tuomela, M., & Hatakka, A. (2011). Oxidative fungal enzymes for bioremediation. In Comprehensive biotechnology (Vol. 6, 2nd ed., pp. 183–196). Amsterdam: Elsevier.CrossRefGoogle Scholar
  148. Upadhyay, P., Shrivastava, R., & Agrawal, P. K. (2016). Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 6, 15.  https://doi.org/10.1007/s13205-015-0316-3.CrossRefGoogle Scholar
  149. Vaidya, S., Srivastava, P. K., Rathore, P., & Pandey, A. K. (2015). Amylases: A prospective enzyme in the field of biotechnology. Journal of Applied Bioscience, 41, 1–18. ISSN (Print) 0975-685X.Google Scholar
  150. Vajravijayan, S., Pletnev, S., Mani, N., Pletneva, N., Nandhagopal, N., & Gunasekaran, K. (2018). Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. International Journal of Biological Macromolecules, 113, 329–337.  https://doi.org/10.1016/j.ijbiomac.2018.02.138.CrossRefGoogle Scholar
  151. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews MMBR, 67, 503–549.CrossRefGoogle Scholar
  152. Verma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL-72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and Agricultural Biotechnology, 1, 321–329.  https://doi.org/10.1016/j.bcab.2012.07.002.CrossRefGoogle Scholar
  153. Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.CrossRefGoogle Scholar
  154. Visser, S. P. D. (2011). Chapter 1: Experimental and computational studies on the catalytic mechanism of non-heme Iron dioxygenases. In Iron-containing enzymes (pp. 1–41).  https://doi.org/10.1039/9781849732987-00001.CrossRefGoogle Scholar
  155. Viswanath, B., Chandra, M. S., Pallavi, H., & Reddy, B. R. (2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology, 7, 1129–1133.Google Scholar
  156. Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme Research.  https://doi.org/10.1155/2014/163242.CrossRefGoogle Scholar
  157. Wake, H. (2005). Oil refineries: A review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62, 131–140.  https://doi.org/10.1016/j.ecss.2004.08.013.CrossRefGoogle Scholar
  158. Wang, Z., Yang, T., Zhai, Z., Zhang, B., & Zhang, J. (2015). Reaction mechanism of dicofol removal by cellulase. Journal of Environmental Sciences, 36, 22–28.  https://doi.org/10.1016/j.jes.2015.03.015.CrossRefGoogle Scholar
  159. Whiteley, C. G., & Lee, D.-J. (2006). Enzyme technology and biological remediation. Enzyme and Microbial Technology, 38, 291–316.  https://doi.org/10.1016/j.enzmictec.2005.10.010.CrossRefGoogle Scholar
  160. Xu, R., Si, Y., Li, F., & Zhang, B. (2015). Enzymatic removal of paracetamol from aqueous phase: Horseradish peroxidase immobilized on nanofibrous membranes. Environmental Science and Pollution Research International, 22, 3838–3846.  https://doi.org/10.1007/s11356-014-3658-1.CrossRefGoogle Scholar
  161. Yamada, K., Inoue, T., Akiba, Y., Kashiwada, A., Matsuda, K., & Hirata, M. (2006). Removal of p-Alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads. Bioscience, Biotechnology, and Biochemistry, 70, 2467–2475.  https://doi.org/10.1271/bbb.60205.CrossRefGoogle Scholar
  162. Yoshida, H. (1883). LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions, 43, 472–486.  https://doi.org/10.1039/CT8834300472.CrossRefGoogle Scholar
  163. Yu, K., & Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One, 7, e38183.  https://doi.org/10.1371/journal.pone.0038183.CrossRefGoogle Scholar
  164. Zancan, L. R., Barreto, A. R., & Meneze, C. R. (2015). Study of the fungal enzyme production by cultured in basidiomycetes lignocellulosic residues. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental Santa Maria, 19, 850–860.Google Scholar
  165. Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277.  https://doi.org/10.1016/j.jhazmat.2016.07.065.CrossRefGoogle Scholar
  166. Zheng, K., Xu, J., Jiang, Q., Laroche, A., Wei, Y., Zheng, Y., & Lu, Z. (2013). Isolation and characterization of an isoamylase gene from rye. The Crop Journal, 1, 127–133.  https://doi.org/10.1016/j.cj.2013.08.001.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Clarissa Hamaio Okino-Delgado
    • 1
  • Mirella Rossitto Zanutto-Elgui
    • 1
  • Débora Zanoni do Prado
    • 1
  • Milene Stefani Pereira
    • 1
  • Luciana Francisco Fleuri
    • 1
  1. 1.Chemistry and Biochemistry Department, Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations