Advertisement

An Overview of Nitro Group-Containing Compounds and Herbicides Degradation in Microorganisms

  • Sikandar I. Mulla
  • Ram Naresh Bharagava
  • Dalel Belhaj
  • Ganesh Dattatraya Saratale
  • Zabin K. Bagewadi
  • Gaurav Saxena
  • Ashok Kumar
  • Harshavardhan Mohan
  • Chang-Ping Yu
  • Harichandra Z. Ninnekar
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 10)

Abstract

Basically, nitro functional group-containing chemicals have been used to synthesize various useful products like dyes, pesticides and solvents, and also military products and so on. Hence, many nitroaromatics (including nitrophenols) have been continuously released into the environment and appear in the soil and water. Some are known to be toxic due to their great impact on living systems (especially on health). Most such chemicals (nitroaromatic compounds) are listed as priority chemicals by the Environmental Protection Agency (EPA). The vast use of such chemicals and their toxic effects had led to the study of the degradation of nitro group-containing chemicals by microbes (an easily available and cost-effective treatment). In view of this, we discuss the degradation of a few nitro group-containing compounds and herbicide(s) by microorganisms from published literature, and we consider the future perspective.

Keywords

3,5-dinitro-ortho-cresol 4-nitrophenol Picric acid Microorganisms Degradation 

References

  1. Arora, P. K., Srivastav, A., & Singh, V. P. (2014). Bacterial degradation of nitrophenols and their derivatives. Journal of Hazardous Materials, 266, 42–59.Google Scholar
  2. Arora, P. K., Srivastava, A., Garg, S. K., & Singh, V. P. (2017). Recent advances in degradation of chloronitrophenols. Bioresource Technology, 250, 902–909.Google Scholar
  3. Beard, R. R., & Noe, J. T. (1981). In G. D. Clayton & F. E. Clayton (Eds.), Patty’s handbook of industrial hygiene and toxicology (Vol. 2A, 3rd ed., pp. 2413–2489). New York: Wiley-Interscience.Google Scholar
  4. Behrend, C., & Heesche-Wagner, K. (1999). Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB22-2. Applied and Environmental Microbiology, 65, 1372–1377.Google Scholar
  5. Blasco, R., Moore, E., Wray, V., Pieper, D. H., Timmis, K., & Castillo, F. (1999). 3-Nitroadipate, a metabolic intermediate for the mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. Journal of Bacteriology, 181, 149–152.Google Scholar
  6. Boopathy, R. (1994). Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp. (strain B). Archives of Microbiology, 62, 167–172.Google Scholar
  7. Burkul, R. M., Ranade, S. V., & Pangarkar, B. L. (2015). Removal of pesticides by using various treatment method: Review. International Journal of Emerging Trends in Engineering and Basic Sciences, 2, 88–91.Google Scholar
  8. Douglas, T. A., Walsh, M. E., McGrath, C. J., Weiss, C. A., Jaramillo, A. M., & Trainor, T. P. (2011). Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Environmental Toxicology and Chemistry, 30, 345–353.Google Scholar
  9. Dunlap, K. L. (1982). In H. F. Mark, D. F. Othmer, C. G. Overberger, & G. T. Seaborg (Eds.), Kirk and Othmer’s encyclopaedia of chemical technology (Vol. 15, 3rd ed., pp. 916–932). New York: Wiley.Google Scholar
  10. Ecker, S., Widmann, T., Lenke, H., Dickel, O., Fischer, P., Bruhn, C., & Knackmuss, H. -J. (1992). Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Archives of Microbiology, 158(2), 149–154.Google Scholar
  11. Edalli, V. A., Patil, K. S., Le, V. V., & Mulla, S. I. (2018). An overview of aniline and chloroaniline compounds as environmental pollutants. Significances of Bioengineering & Biosciences, 1(4), 1–2.  https://doi.org/10.31031/SBB.2018.01.000519.CrossRefGoogle Scholar
  12. Gosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A. K., & Jain, R. K. (2010). Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol and 2,4-dinitrophenol by Rhodococcusimtechensis strain RKJ300. Environmental Science and Technology, 44, 1067–1077.Google Scholar
  13. Gundersen, K., & Jensen, H. L. (1956). A soil bacterium decomposing organic nitro-compounds. Acta Agriculturae Scandinavica, 6, 110–114.Google Scholar
  14. Haghighi-Podeh, M. R., & Bhattacharya, S. K. (1996). Fate and toxic effects of nitrophenols on anaerobic treatment systems. Water Science and Technology, 34, 345–350.Google Scholar
  15. Haizhen, W., Chaohai, W., Yaqin, W., Qincong, H., & Shizhong, L. (2009). Degradation of o-chloronitrobenzene as the carbon & nitrogen sources by Pseudomonas putida OCNB-1. Journal of Environmental Sciences, 21, 89–95.Google Scholar
  16. Hanne, L. F., Kirk, L. L., Appel, S. M., Narayan, A. D., & Bains, K. K. (1993). Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Applied and Environmental Microbiology, 59, 3505–3508.Google Scholar
  17. Hess, T. F., Silverstein, J., & Schmidt, S. K. (1993). Effect of glucose on 2,4-dinitrophenol degradation kinetics in sequencing batch reactors. Water Environment Research, 65(1), 73–81.Google Scholar
  18. Hirai, K. (1999). Structural evolution and synthesis of diphenyl ethers, cyclic imides, and related compounds. In P. Boger & K. Wakabayashi (Eds.), Peroxidizing herbicides (pp. 15–72). Berlin: Springer.Google Scholar
  19. Hirooka, T., Nagase, H., Hirata, K., & Miyamoto, K. (2006). Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms. Biochemical Engineering Journal, 29(1), 157–162.Google Scholar
  20. Hoskeri, R. S., Mulla, S. I., Shouche, Y. S., & Ninnekar, H. Z. (2011). Biodegradation of 4- chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC. Biodegradation, 22, 509–516.Google Scholar
  21. Hoskeri, R. S., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatalysis and Agricultural Biotechnology, 3, 390–396.Google Scholar
  22. Iwaki, H., Abe, K., & Hasegawa, Y. (2007). Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway. FEMS Microbiology Letters, 274(1), 112–117.Google Scholar
  23. Jain, R. K., Dreisbach, J. H., & Spain, J. C. (1994). Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Applied and Environmental Microbiology, 60, 3030–3032.Google Scholar
  24. Jensen, H. L., & Gundersen, K. (1955). Biological decomposition of aromatic nitro compounds. Nature, 175, 341.Google Scholar
  25. Jensen, H. L., & Lautrup-Larsen, G. (1967). Microorganisms that decompose nitro-aromatic compounds, with special reference to dinitro-ortho-cresol. Acta Agriculturae Scandinavica, 17, 115–126.Google Scholar
  26. Ju, K. S., & Parales, R. E. (2010). Nitroaromatic compounds, from synthesis to biodegradation. Microbiology and Molecular Biology Reviews, 74, 250–272.Google Scholar
  27. Kaake, R. H., Crawford, D. L., & Crawford, R. L. (1995). Biodegradation of the nitroaromatic herbicide dinoseb (2-sec-butyl-4,6-dinitrophenol) under reducing conditions. Biodegradation, 6, 329–337.Google Scholar
  28. Kadiyala, V., & Spain, J. C. (1998). A two-component monooxygenasecatalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology, 64, 2479–2484.Google Scholar
  29. Khalid, A., Arshad, M., & Crowley, D. E. (2009). Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Research, 43, 1110–1116.Google Scholar
  30. Kinouchi, T., & Ohnishi, Y. (1983). Purification and characterization of 1-nitropyrene nitroreductases from Bacteroidesfragilis. Applied and Environmental Microbiology, 46, 596–604.Google Scholar
  31. Kitagawa, W., Kimura, N., & Kamagata, Y. (2004). A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcusopacus SAO101. Journal of Bacteriology, 186, 4894–4902.Google Scholar
  32. Kovacic, P., & Somanathan, R. (2014). Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. Journal of Applied Toxicology, 34, 810–824.Google Scholar
  33. Lenke, H., & Knackmuss, H. J. (1992). Initial hydrogenation during catabolism of picric acid by Rhodococcuserythropolis HL 24-2. Applied and Environmental Microbiology, 58, 2933–2937.Google Scholar
  34. Li, Z., & Yang, P. (2018). Review on physicochemical, chemical, and biological processes for pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science, 113, 012185.Google Scholar
  35. Li, Y. Y., Zhou, B., Li, W., Peng, X., Zhang, J. S., & Yan, Y. C. (2008). Mineralization of p-nitrophenol by a new isolate Arthrobacter sp. Y1. Journal of Environmental Science and Health. Part. B, 43, 692–697.Google Scholar
  36. Megadi, V. B., Tallur, P. N., Mulla, S. I., & Ninnekar, H. Z. (2010). Bacterial degradation of Fungicide captan. Journal of Agricultural and Food Chemistry, 58, 12863–12868.Google Scholar
  37. Meulenberg, R., Pepi, M., & de Bont, J. A. M. (1996). Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation, 7, 303–311.Google Scholar
  38. Min, J., Wang, B., & Hu, X. (2017a). Effect of inoculation of Burkholderia sp. strain SJ98 on bacterial community dynamics and para-nitrophenol, 3-methyl-4-nitrophenol, and 2-chloro-4-nitrophenol degradation in soil. Scientific Reports, 7, 5983.Google Scholar
  39. Min, J., Chen, W., Wang, J., & Hu, X. (2017b). Genetic and biochemical characterization of 2-chloro-5-nitrophenol degradation in a newly isolated bacterium, Cupriavidus sp. Strain CNP-8. Frontiers in Microbiology, 8, 1778.Google Scholar
  40. Min, J., Wang, J., Chen, W., & Hu, X. (2018). Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express, 8, 43.Google Scholar
  41. Mulla, S. I., Hoskeri, R. S., Shouche, Y. S., & Ninnekar, H. Z. (2011a). Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation, 22, 95–102.Google Scholar
  42. Mulla, S. I., Manjunatha, T. P., Hoskeri, R. S., Tallur, P. N., & Ninnekar, H. Z. (2011b). Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World Journal of Microbiology and Biotechnology, 27, 1587–1592.Google Scholar
  43. Mulla, S. I., Talwar, M. P., Hoskeri, R. S., & Ninnekar, H. Z. (2012). Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4. Biotechnology and Bioprocess Engineering, 17, 1294–1299.Google Scholar
  44. Mulla, S. I., Talwar, M. P., & Ninnekar, H. Z. (2014). Bioremediation of 2,4,6-Trinitrotoluene explosive residues. In S. N. Singh (Ed.), Biological remediation of explosive residues (Environmental science and engineering) (pp. 201–233). Cham: Springer.Google Scholar
  45. Mulla, S. I., Bangeppagari, M. D., Mahadevan, G. D., Eqani, S. A. M. A. S., Sajjan, D. B., Tallur, P. N., Megadi, V. B., Harichandra, Z., & Ninnekar, H. Z. (2016a). Biodegradation of 3-chlorobenzoate and 3-hydroxybenzoate by polyurethane foam immobilized cells of Bacillus sp. OS13. Journal of Environmental Chemical Engineering, 4(2), 1423–1431.Google Scholar
  46. Mulla, S. I., Sun, Q., Hu, A., Wang, Y., Ashfaq, M., Eqani, S. A. M. A. S., & Yu, C. P. (2016b). Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One, 11, e0165013.Google Scholar
  47. Mulla, S. I., Wang, H., Sun, Q., Hu, A., & Yu, C. P. (2016c). Characterization of triclosan metabolism in Sphingomonassp. strain YL-JM2C. Scientific Reports, 6, 21965.Google Scholar
  48. Mulla, S. I., Hu, A., Wang, Y., Sun, Q., Huang, S. L., Wang, H., & Yu, C. P. (2016d). Degradation of triclocarban by a triclosan-degrading Sphingomonassp. strain YL-JM2C. Chemosphere, 144, 292–296.Google Scholar
  49. Mulla, S. I., Ameen, F., Tallur, P. N., Bharagava, R. N., Bangeppagari, M., SAMAS, E., Bagewadi, Z. K., Mahadevan, G. D., Yu, C. P., & Ninnekar, H. Z. (2017). Aerobic degradation of fenvalerate by a gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech, 7, 320.Google Scholar
  50. Mulla, S. I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., & Yu, C. P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, 93–102.Google Scholar
  51. Nishino, N., & Spain, J. C. (1993). Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol. Environmental Science & Technology, 27, 489–494.Google Scholar
  52. Nishino, S. F., Spain, J. C., & He, Z. (2000). Strategies for aerobic degradation of nitroaromatic compounds by bacteria: Process discovery to field application. In J. C. Spain, J. B. Hugeghes, & H. J. Knackmuss (Eds.), Biodegradation of nitroaromatic compounds and explosives (pp. 7–61). New York: Lewis Publishing Co.Google Scholar
  53. Oren, A., Gurevich, P., & Henis, Y. (1991). Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobiumpraevalens and Sporohalobactermarismortui. Applied and Environmental Microbiology, 57(11), 3367–3370.Google Scholar
  54. Osin, O. A., Yu, T., Cai, X., Jiang, Y., Peng, G., Cheng, X., Li, R., Qin, Y., & Lin, S. (2018). Photocatalytic degradation of 4-nitrophenol by C, N-TiO2: degradation efficiency vs. embryonic toxicity of the resulting compounds. Frontiers in Chemistry, 6, 192.Google Scholar
  55. Padda, R. S., Wang, C., Hughes, J. B., Kutty, R., & Bennett, G. N. (2003). Mutagenicity of nitroaromatic degradation compounds. Environmental Toxicology and Chemistry, 22, 2293–2297.Google Scholar
  56. Pakala, S. B., Gorla, P., Pinjari, A. B., Krovidi, R. J., Baru, R., Yanamandra, M., Merrick, M., & Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of p-nitrophenol 2-hydroxylase in a Gram-negative Serratiasp. strain DS001. Applied Microbiology and Biotechnology, 73, 1452–1462.Google Scholar
  57. Plunkett, E. R. (1966). Handbook of industrial toxicology (pp. 152–153). New York: Chemical Publishing Co.Google Scholar
  58. Purohit, V., & Basu, A. K. (2000). Mutagenicity of nitroaromatic compounds. Chemical Research in Toxicology, 13, 673–692.Google Scholar
  59. Rajan, J., Valli, K., Perkins, R. E., Sariaslani, F. S., Barns, S. M., Reysenbach, A. L., Rehm, S., Ehringer, M., & Pace, N. R. (1996). Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. Journal of Industrial Microbiology & Biotechnology, 16, 319–324.Google Scholar
  60. Rieger, P. G., & Knackmuss, H. J. (1995). Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In J. C. Spain (Ed.), Biodegradation of nitroaromatic compounds (Vol. 49, pp. 1–18). New York: Plenum Press.Google Scholar
  61. Schafer, A., Harms, H., & Zehnder, A. J. (1996). Biodegradation of 4-nitroanisole by two Rhodococcusspp. Biodegradation, 7, 249–255.Google Scholar
  62. Schenzle, A., Lenke, H., Fischer, P., Williams, P. A., & Knackmuss, H. J. (1997). Catabolism of 3-nitrophenol by Ralstoniaeutropha JMP134. Applied and Environmental Microbiology, 63, 1421–1427.Google Scholar
  63. Schenzle, A., Lenke, H., Spain, J. C., & Knackmuss, H. J. (1999). Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstoniaeutropha JMP134. Applied and Environmental Microbiology, 65, 2317–2323.Google Scholar
  64. Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., & He, R. (2009). Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 163, 1199–1206.Google Scholar
  65. Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49, 523–555.Google Scholar
  66. Spain, J. C., & Gibson, D. T. (1991). Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Applied and Environmental Microbiology, 57, 812–819.Google Scholar
  67. Spain, J. C., Hughes, J. B., & Knackmuss, H. J. (Eds.). (2000). Biodegradation of nitroaromatic compounds and explosives. Boca Raton: CRC Press.Google Scholar
  68. Stevens, T. O., Crawford, R. L., & Crawford, D. L. (1991). Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol). Biodegradation, 2, 1–13.Google Scholar
  69. Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K., Naidu, R., Lockington, R., & Megharaj, M. (2018). Rhodococcuswratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation. Journal of Hazardous Materials, 347, 176–183.Google Scholar
  70. Tabak, H. H., Chambers, C. W., & Kabler, P. W. (1964). Microbial metabolism of aromatic compounds I.: Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. Journal of Bacteriology, 87, 910–919.Google Scholar
  71. Takeo, M., Murakami, M., Niihara, S., Yamamoto, K., Nishimura, M., Kato, D., & Negoro, S. (2008). Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1: Characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. Journal of Bacteriology, 190, 7367–7374.Google Scholar
  72. Tallur, P. N., Mulla, S. I., Megadi, V. B., Talwar, M. P., & Ninnekar, H. Z. (2015). Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Brazilian Journal of Microbiology, 46, 667–672.Google Scholar
  73. Talwar, M. P., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of organophosphate pesticide quinalphos by Ochrobactrumsp. strain HZM. Journal of Applied Microbiology, 117, 1283–1292.Google Scholar
  74. Teramoto, H., Tanaka, H., & Wariishi, H. (2004). Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 66(3), 312–317.Google Scholar
  75. Tewfik, M. S., & Evans, W. C. (1966). The metabolism of 3,5-dinitro-o-cresol (DNOC). The Biochemical Journal, 99, 31–3231.Google Scholar
  76. Tian, J., An, X., Liu, J., Yu, C., Zhao, R., Wang, J., & Chen, L. (2018). Optimization of 4-nitrophenol degradation by an isolated bacterium Arthrobacter sp. and the novel biodegradation pathways under nutrition deficient conditions. Journal of Environmental Engineering, 144(4), 04018012.Google Scholar
  77. Unell, M., Nordin, K., Jernberg, C., Stenström, J., & Jansson, J. K. (2008). Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 19, 495–505.Google Scholar
  78. Wan, N., Gu, J. D., & Yan, Y. (2007). Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. International Biodeterioration and Biodegradation, 59, 90–96.Google Scholar
  79. Wang, J., Ren, L., Jia, Y., Ruth, N., Shi, Y., Qiao, C., & Yan, Y. (2016). Degradation characteristics and metabolic pathway of 4-nitrophenol by a halotolerant bacterium Arthrobacter sp. CN2. Toxicological and Environmental Chemistry, 98, 226–240.Google Scholar
  80. Ware, G. W. (1994). The pesticide book (4th ed.). Fresno: Thompson Publications.Google Scholar
  81. White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: A review. Mutation Research, 567, 227–345.Google Scholar
  82. Windholz, M., Budavari, S., Stroumtsos, L. Y., & Fertig, M. (1976). Merck Index (9th ed., pp. 6408–6474). Whitehouse Station: Merck and Co., Inc.Google Scholar
  83. Xiao, Y., Zhang, J. J., Liu, H., & Zhou, N. Y. (2007). Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. Journal of Bacteriology, 189, 6587–6593.Google Scholar
  84. Ye, J., Singh, A., & Ward, O. P. (2004). Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World Journal of Microbiology and Biotechnology, 20, 117–135.Google Scholar
  85. Yue, W., Chen, M., Cheng, Z., Xie, L., & Li, M. (2018). Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors. Journal of Hazardous Materials, 344, 431–440.Google Scholar
  86. Zeyer, J., & Kearney, P. C. (1984). Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. Journal of Agricultural and Food Chemistry, 32, 238–242.Google Scholar
  87. Zeyer, J., Kocher, H. P., & Timmis, K. N. (1986). Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Applied and Environmental Microbiology, 52(2), 334–339.Google Scholar
  88. Zhang, J. J., Liu, H., Xiao, Y., Zhang, X. E., & Zhou, N. Y. (2009). Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. Journal of Bacteriology, 191, 2703–2710.Google Scholar
  89. Zin, S. M., Habib, S., Yasid, N. A., & Ahmad, S. A. (2018). A Review on Microbial Degradation of 2,4-Dinitrophenol. Journal of Environmental Microbiology and Toxicology, 6, 28–33.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sikandar I. Mulla
    • 1
    • 2
  • Ram Naresh Bharagava
    • 3
  • Dalel Belhaj
    • 4
  • Ganesh Dattatraya Saratale
    • 5
  • Zabin K. Bagewadi
    • 6
  • Gaurav Saxena
    • 3
  • Ashok Kumar
    • 7
  • Harshavardhan Mohan
    • 8
  • Chang-Ping Yu
    • 1
  • Harichandra Z. Ninnekar
    • 2
  1. 1.Key Laboratory of Urban Pollutant Conversion, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.Department of BiochemistryKarnatak UniversityDharwadIndia
  3. 3.Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM)Baba Saheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  4. 4.FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems Ecology and PlanktonologyUniversity of Sfax-TunisiaSfaxTunisia
  5. 5.Department of Food Science and BiotechnologyDongguk University-SeoulSeoulRepublic of Korea
  6. 6.Department of BiotechnologyKLE Technological UniversityHubballiIndia
  7. 7.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
  8. 8.Department of Environmental SciencePSG College of Arts and ScienceCoimbatoreIndia

Personalised recommendations