Advertisement

Glucose Metabolism Imaging

  • Liang Shi
  • Jianjun Liu
Chapter

Abstract

The metabolism of carbohydrates includes glycolysis, aerobic oxidation, pentose phosphate pathway, glycogen synthesis, and gluconeogenesis. Glucose metabolism has two major functions: providing energy for living organisms and supplying a huge array of metabolic intermediates for biosynthetic reactions [1].

References

  1. 1.
    Ferrier DR (2011) Biochemistry, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 91–154Google Scholar
  2. 2.
    Chaneton B, Hillmann P, Zheng L et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5):565–577PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144(3):167–174PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Neely JR, Denton RM, England PJ et al (1972) The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 128(1):147–159PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270Google Scholar
  7. 7.
    Hsieh AL, Walton ZE, Altman BJ et al (2015) MYC and metabolism on the path to cancer. Semin Cell Dev Biol 43:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Teleman AA, Hietakangas V, Sayadian AC et al (2008) Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 7(1):21–32PubMedCrossRefGoogle Scholar
  10. 10.
    Osthus RC, Shim H, Kim S et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800PubMedCrossRefGoogle Scholar
  11. 11.
    Le A, Lane AN, Hamaker M et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    David CJ, Chen M, Assanah M et al (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463(7279):364–368PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kim JW, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185PubMedCrossRefGoogle Scholar
  16. 16.
    Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6(1):127–148PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kawada K, Toda K, Sakai Y (2017) Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol 22(4):651–659PubMedCrossRefGoogle Scholar
  18. 18.
    Gysin S, Salt M, Young A et al (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2(3):359–372PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yun J, Rago C, Cheong I et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kawada K, Nakamoto Y, Kawada M et al (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18(6):1696–1703PubMedCrossRefGoogle Scholar
  22. 22.
    Miles KA, Ganeshan B, Rodriguez-Justo M et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 55(3):386–391PubMedCrossRefGoogle Scholar
  23. 23.
    Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kawauchi K, Araki K, Tobiume K et al (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618PubMedCrossRefGoogle Scholar
  26. 26.
    Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780PubMedCrossRefGoogle Scholar
  27. 27.
    Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120CrossRefGoogle Scholar
  28. 28.
    Baig MH, Adil M, Khan R, et al (2017) Enzyme targeting strategies for prevention and treatment of cancer: implications for cancer therapy. Semin Cancer Biol.  https://doi.org/10.1016/j.semcancer.2017.12.003. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  29. 29.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(7):969–980CrossRefGoogle Scholar
  31. 31.
    Zhang JY, Zhang F, Hong CQ et al (2015) Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 12(1):10–22PubMedPubMedCentralGoogle Scholar
  32. 32.
    Peng XC, Gong FM, Chen Y et al (2016) Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer. J Proteomics 132:85–92PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Cao Y, Zhang W et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682PubMedCrossRefGoogle Scholar
  34. 34.
    Ooi AT, Gomperts BN (2015) Molecular pathways: targeting cellular energy metabolism in cancer via inhibition of SLC2A1 and LDHA [J]. Clin Cancer Res 21(11):2440–2444PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Raez LE, Papadopoulos K, Ricart AD et al (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71(2):523–530PubMedCrossRefGoogle Scholar
  36. 36.
    Chong D, Ma L, Liu F et al (2017) Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 28(8):831–840PubMedCrossRefGoogle Scholar
  37. 37.
    Clem BF, O’neal J, Tapolsky G et al (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12(8):1461–1470PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Keri G, Erchegyi J, Horvath A et al (1996) A tumor-selective somatostatin analog (TT-232) with strong in vitro and in vivo antitumor activity. Proc Natl Acad Sci U S A 93(22):12513–12518PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Liang Shi
    • 1
  • Jianjun Liu
    • 1
  1. 1.Department of Nuclear MedicineRenJi Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiP. R. China

Personalised recommendations