Advertisement

The Current Status of Proton Beam Therapy

  • Yutaro MoriEmail author
Chapter
  • 263 Downloads

Abstract

Proton beam therapy has advanced from clinical research stage to evidence-based treatment stage. Many new projects have been made around the world and the number of proton therapy facilities has increased. This chapter outlines the current state of proton therapy and shows the direction of development.

Keywords

Proton beam therapy Beam delivery system Static method Scanning method Rotating gantry Treatment planning system 

References

  1. 1.
    Particle Therapy Co-Operative Group (2016). https://www.ptcog.ch/
  2. 2.
    American Society for Radiation Oncology HP (2016). https://www.astro.org/Practice-Management/Reimbursement/Model-Policies.aspx
  3. 3.
    Akimoto T (2013) Current status and future direction of proton beam therapy. Presentation National Cancer Center Hospital, JapanGoogle Scholar
  4. 4.
    Takada Y (1994) Dual-ring double scattering method for proton field beam spreading. Jpn J Appl Phys 33:353–359CrossRefGoogle Scholar
  5. 5.
    Renner TR, Chu WT (1987) Wobbler facility for biomedical experiments. Med Phys 14:825–834CrossRefGoogle Scholar
  6. 6.
    Kanai T, Kawachi K, Kumamoto Y, Ogawa H, Yamada T, Matsuzawa H, Inada T (1980) Spot scanning system for proton radiotherapy. Med Phys 7:365–369CrossRefGoogle Scholar
  7. 7.
    Schneider U, Agosteo S, Pedroni E, Besserer J (2002) Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys 53:244–251CrossRefGoogle Scholar
  8. 8.
    Paganetti H, Jiang H, Trofimov A (2005) 4D Monte Carlo simulation of proton beam scanning: modelling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry. Phys Med Biol 50:983–990CrossRefGoogle Scholar
  9. 9.
    Hyer DE, Hill PM, Wang D, Smith BR, Flynn RT (2014) A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept. Med Phys 41:1–9Google Scholar
  10. 10.
    Olaf N, Marcus W, Peter OJ (2013) Accuracy of robotic patient positioners used in ion beam therapy. Radiat Oncol 124:1–7Google Scholar
  11. 11.
    Engelsman M, Rietzel E, Kooy HM (2006) Four-dimensional proton treatment planning for lung tumors. Int J Radiat Oncol Biol Phys 64:1589–1595CrossRefGoogle Scholar
  12. 12.
    Shirato H, Shimizu S, Kunieda T, Kitamura K, Marcek VH, Kagei K, Nishioka T, Hashimot S, Fujita K, Aoyama H, Tsuchiya K, Kudo K, Miyasaka K (2000) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48:1187–1195CrossRefGoogle Scholar
  13. 13.
    International Commission on Radiation Units and Measurements (1999) ICRU Report 62. Prescribing, recording, and reporting photon beam therapyGoogle Scholar
  14. 14.
    International Commission on Radiation Units and Measurements (2007) ICRU Report 78: Prescribing, recording, and reporting proton-beam therapyGoogle Scholar
  15. 15.
    Park PC, Zhu XR, Lee AK, Sahoo N, Melancon AD, Zhang L, Dong L (2012) A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys 82:329–336CrossRefGoogle Scholar
  16. 16.
    Lomax A (1999) Intensity modulation methods for proton radiotherapy. Phys Med Biol 44:185–205CrossRefGoogle Scholar
  17. 17.
    DeLaney TF, Kooy HM (2008) Proton and charged particle radiotherapy: Chapter 8 Treatment planningGoogle Scholar
  18. 18.
    Varian Medical Systems (2011) Proton algorithm reference guide: Eclipse. Varian Medical Systems, Palo Alto CAGoogle Scholar
  19. 19.
    Philips Medical Systems (2013) Pinnacle3 IMPT/spot scanning proton treatment planning prototype user manual. Philips Healthcare, Andover MAGoogle Scholar
  20. 20.
    Fredriksson A, Forsgren A, Hårdemark B (2011) Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys 38:1672–1684CrossRefGoogle Scholar
  21. 21.
    Perl J, Shin J, Schumann J, Faddegon B, Paganetti H (2012) TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39:6818–6837CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Proton Medical Research Center, Faculty of MedicineUniversity of TsukubaTsukubaJapan

Personalised recommendations