Advertisement

CAP (Cyclase-Associated Protein): The Silent Worker

  • Samridhi Pathak
  • Ricka Gauba
  • Sarath Chandra Dantu
  • Avinash KaleEmail author
Chapter

Abstract

In the current chapter, we provide an overview of the CAP (cyclase-associated protein) and its salient features in regulating the actin-mediated gliding motility. It is one of the highly conserved, multi-domain proteins involved in regulating the actin dynamics. Unlike the eukaryotic counterparts, CAPs in apicomplexan do not possess different isoform and lack the upstream N-terminal domain indicating a differential regulatory function. As observed in our study, CAP in apicomplexan showed lack of unique consensus motif important for actin binding except for Plasmodium vivax.

Supplementary material

480865_1_En_6_MOESM1_ESM.xlsx (63 kb)
ST_CAP-1 Sequence comparison identity matrix for CAP proteins used in the current study (XLSX 62 kb)

Bibliography

  1. 1.
    Ono S (2013) The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor. J Cell Sci 126(15):3249–3258.  https://doi.org/10.1242/jcs.128231 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bertling E, Quintero-Monzon O, Mattila PK, Goode BL, Lappalainen P (2007) Mechanism and biological role of profilin-Srv2/CAP interaction. J Cell Sci 120(7):1225–1234.  https://doi.org/10.1242/jcs.000158 CrossRefPubMedGoogle Scholar
  3. 3.
    Miyauchi-Nomura S, Obinata T, Sato N (2012) Cofilin is required for organization of sarcomeric actin filaments in chicken skeletal muscle cells. Cytoskeleton 69(5):290–302.  https://doi.org/10.1002/cm.21025 CrossRefPubMedGoogle Scholar
  4. 4.
    Baum B, Li W, Perrimon N (2000) A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr Biol 10(16):964–973CrossRefGoogle Scholar
  5. 5.
    Benlali A, Draskovic I, Hazelett DJ, Treisman JE (2000) Act up controls actin polymerization to alter cell shape and restrict hedgehog signaling in the drosophila eye disc. Cell 101(3):271–281.  https://doi.org/10.1016/S0092-8674(00)80837-5 CrossRefPubMedGoogle Scholar
  6. 6.
    Peche VS, Holak TA, Burgute BD et al (2013) Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 70(3):527–543.  https://doi.org/10.1007/s00018-012-1142-y CrossRefPubMedGoogle Scholar
  7. 7.
    Effendi K, Yamazaki K, Mori T, Masugi Y, Makino S, Sakamoto M (2013) Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression. Exp Cell Res 319(1):35–44.  https://doi.org/10.1016/j.yexcr.2012.09.013 CrossRefPubMedGoogle Scholar
  8. 8.
    Hliscs M, Sattler JM, Tempel W et al (2010) Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector. J Biol Chem 285(15):11572–11583.  https://doi.org/10.1074/jbc.M109.054916 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Swiston J, Hubberstey A, Yu G, Young D (1995) Differential expression of CAP and CAP2 in adult rat tissues. Gene 165(2):273–277CrossRefGoogle Scholar
  10. 10.
    Hubberstey A, Yu G, Loewith R, Lakusta C, Young D (1996) Mammalian CAP interacts with CAP, CAP2, and actin. J Cell Biochem 61(3):459–466CrossRefGoogle Scholar
  11. 11.
    Makkonen M, Bertling E, Chebotareva NA, Baump J, Lappalainen P (2013) Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism. J Biol Chem 288(2):984–994.  https://doi.org/10.1074/jbc.M112.435719 CrossRefPubMedGoogle Scholar
  12. 12.
    Freeman NL, Chen Z, Horenstein J, Weber A, Field J (1995) An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J Biol Chem 270(10):5680–5685CrossRefGoogle Scholar
  13. 13.
    Moriyama K, Yahara I (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci 115(Pt 8):1591–1601PubMedGoogle Scholar
  14. 14.
    Normoyle KPM, Brieher WM (2012) Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH. J Biol Chem 287(42):35722–35732.  https://doi.org/10.1074/jbc.M112.396051 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ksiazek D, Brandstetter H, Israel L et al (2003) Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from dictyostelium discoideum. Structure 11(9):1171–1178.  https://doi.org/10.1016/S0969-2126(03)00180-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Yusof AM, Hu N-J, Wlodawer A, Hofmann A (2004) Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP). Proteins Struct Funct Bioinforma 58(2):255–262.  https://doi.org/10.1002/prot.20314 CrossRefGoogle Scholar
  17. 17.
    Mavoungou C, Israel L, Rehm T et al (2004) NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. J Biomol NMR 29(1):73–84.  https://doi.org/10.1023/B:JNMR.0000019513.86120.98 CrossRefPubMedGoogle Scholar
  18. 18.
    Ono S (2013) The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor. J Cell Sci 126(Pt 15):3249–3258.  https://doi.org/10.1242/jcs.128231 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chaudhry F, Breitsprecher D, Little K, Sharov G, Sokolova O, Goode BL (2013) Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol Biol Cell 24(1):31–41.  https://doi.org/10.1091/mbc.E12-08-0589 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chaudhry F, Little K, Talarico L, Quintero-Monzon O, Goode BL (2010) A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken) 67(2):120–133.  https://doi.org/10.1002/cm.20429 CrossRefGoogle Scholar
  21. 21.
    Dodatko T, Fedorov AA, Grynberg M et al (2004) Crystal structure of the actin binding domain of the cyclase-associated protein. Biochemistry 43(33):10628–10641.  https://doi.org/10.1021/bi049071r CrossRefPubMedGoogle Scholar
  22. 22.
    Perelroizen I, Didry D, Christensen H, Chua N-H, Carlier M-F (1996) Role of nucleotide exchange and hydrolysis in the function of profilin in actin assembly. J Biol Chem 271(21):12302–12309.  https://doi.org/10.1074/jbc.271.21.12302 CrossRefPubMedGoogle Scholar
  23. 23.
    Kovar DR (2000) Maize profilin isoforms are functionally distinct. Plant Cell Online 12(4):583–598.  https://doi.org/10.1105/tpc.12.4.583 CrossRefGoogle Scholar
  24. 24.
    Tempel W, Dong A, Zhao Y, Lew J, Kozieradzki I, Alam Z, Melone M, Wasney G, Vedadi M, Arrowsmith C, Edwards A, Weigelt J, Sundstrom M, Hui R, Bochkarev A, Artz J (2010) SGC crystal structure of cyclase-associated protein from Cryptosporidium parvum. J Biol Chem 151:100–110.  https://doi.org/10.1074/jbc.M109.054916 CrossRefGoogle Scholar
  25. 25.
    Sigrist CJA, De Castro E, Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060–4066.  https://doi.org/10.1093/bioinformatics/bti614 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Samridhi Pathak
    • 1
  • Ricka Gauba
    • 1
  • Sarath Chandra Dantu
    • 2
  • Avinash Kale
    • 1
    Email author
  1. 1.School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences (CEBS)MumbaiIndia
  2. 2.Department of Computer Science, Synthetic Biology ThemeBrunel University LondonUxbridgeUK

Personalised recommendations