Advertisement

Global Sea Level Change

  • Shuang YiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We compute the GMSL rate from altimetry data over five-year-long moving windows to show the interannual variance in the period 1993–2014 and depict the results in Fig. 4.1. The average trend from 1993 to 2014 is 3.2 ± 0.4 mm/yr. Rates faster/slower than the whole-period average are expressed in red/blue. Figure 4.1 shows that the GMSL rate was fast in 1996–2004 and slow in 2005–2010. Since then, the five-year trend appears to be accelerating again, indicating that the GMSL is rising faster since 2010.

References

  1. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., & Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters, 39(19).Google Scholar
  2. Cazenave, A., & Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth’s Future, 2(2), 15–34.CrossRefGoogle Scholar
  3. Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4(5), 358–361.CrossRefGoogle Scholar
  4. Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., et al. (2009). Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global and Planetary Change, 65(1), 83–88.CrossRefGoogle Scholar
  5. Chao, B. F., Wu, Y., & Li, Y. (2008). Impact of artificial reservoir water impoundment on global sea level. Science, 320(5873), 212–214.CrossRefGoogle Scholar
  6. Chen, J., Wilson, C., Blankenship, D., & Tapley, B. (2009). Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2(12), 859–862.CrossRefGoogle Scholar
  7. Chen, J., Wilson, C., & Tapley, B. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7), 549–552.CrossRefGoogle Scholar
  8. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585–602.CrossRefGoogle Scholar
  9. Fasullo, J. T., Boening, C., Landerer, F. W., & Nerem, R. S. (2013). Australia’s unique influence on global sea level in 2010–2011. Geophysical Research Letters, 40(16), 4368–4373.CrossRefGoogle Scholar
  10. Gardner, A. S., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.CrossRefGoogle Scholar
  11. Geruo, A., Wahr, J., & Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2), 557–572.CrossRefGoogle Scholar
  12. Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., et al. (2013). Ice-sheet mass balance and climate change. Nature, 498(7452), 51–59.CrossRefGoogle Scholar
  13. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2013: The physical science basis. Cambridge, UK, and New York: Cambridge University Press.Google Scholar
  14. Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17).CrossRefGoogle Scholar
  15. Leuliette, E. W., & Miller, L. (2009). Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophysical Research Letters, 36(4).Google Scholar
  16. Leuliette, E. W., & Willis, J. K. (2011). Balancing the sea level budget. Oceanography, 24.Google Scholar
  17. Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., et al. (2011). Terrestrial waters and sea level variations on interannual time scale. Global and Planetary Change, 75(1), 76–82.CrossRefGoogle Scholar
  18. Llovel, W., Willis, J. K., Landerer, F. W., & Fukumori, I. (2014). Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Climate Change, 4(11), 1031–1035.CrossRefGoogle Scholar
  19. Matsuo, K., Chao, B. F., Otsubo, T., & Heki, K. (2013). Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophysical Research Letters, 40(17), 4662–4667.CrossRefGoogle Scholar
  20. Nerem, R. S., Chambers, D. P., Choe, C., & Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(S1), 435–446.CrossRefGoogle Scholar
  21. Purkey, S. G., & Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate, 23(23), 6336–6351.CrossRefGoogle Scholar
  22. Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36.  https://doi.org/10.1029/2009gl040222.
  23. Velicogna, I., Sutterley, T., & Broeke, M. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data. Geophysical Research Letters.Google Scholar
  24. Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research-Solid Earth, 103(B12), 30205–30229.  https://doi.org/10.1029/98jb02844.CrossRefGoogle Scholar
  25. Wouters, B., Bamber, J., van den Broeke, M., Lenaerts, J., & Sasgen, I. (2013). Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geoscience, 6(8), 613–616.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of GeodesyUniversity of StuttgartStuttgartGermany

Personalised recommendations