Advertisement

Chitin in Arthropods: Biosynthesis, Modification, and Metabolism

  • Xiaojian Liu
  • Jianzhen ZhangEmail author
  • Kun Yan ZhuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)

Abstract

Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.

Keywords

Chitin biosynthesis Chitin deacetylation Chitin degradation Cuticle Peritrophic matrix 

Notes

Acknowledgements

We acknowledge that many relevant studies could not be cited due to space restrictions. We thank Dr. Qing Yang for her invitation to write this chapter. Relevant research conducted in the authors’ laboratories was supported by the grants from the National Natural Science Foundation of China (Grant Nos. 31730074, 31672364) and the Kansas Agricultural Experiment Station, Manhattan, Kansas (KS 362, KS471). This manuscript has contribution no. 19-139-B from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA.

References

  1. Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ et al (2014) Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol 49:24–34CrossRefPubMedGoogle Scholar
  2. Alvarenga ES, Mansur JF, Justi SA, Figueira-Mansur J, Dos Santos VM, Lopez SG et al (2016) Chitin is a component of the Rhodnius prolixus midgut. Insect Biochem Mol Biol 69:61–70CrossRefPubMedGoogle Scholar
  3. Ampasala DR, Zheng SC, Zhang DY, Ladd T, Doucet D, Krell PJ et al (2011) An epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: cloning, characterization, developmental and hormonal-regulated expression. Arch Insect Biochem 76:83–96CrossRefGoogle Scholar
  4. Andersen SO (1979) Insect cuticle. Annu Rev Entomol 24:29–61CrossRefGoogle Scholar
  5. Andersen SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 28:421–434CrossRefPubMedGoogle Scholar
  6. Andersen SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem Mol Biol 30:569–577CrossRefPubMedGoogle Scholar
  7. Andersen SO, Rafn K, Roepstorff P (1997) Sequence studies of proteins from larval and pupal cuticle of the yellow mealworm, Tenebrio moliter. Insect Biochem Mol Biol 27:121–131CrossRefPubMedGoogle Scholar
  8. Arakane Y, Baguinon M, Jasrapuria S, Chaudhari S, Doyungan A, Kramer KJ et al (2011) Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity. Insect Biochem Mol Biol 41:42–50CrossRefPubMedGoogle Scholar
  9. Arakane Y, Dixit R, Begum K, Park Y, Specht CA, Merzendorfer H et al (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355–365CrossRefPubMedGoogle Scholar
  10. Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW et al (2004) Characterization of two chitin synthase genes of the red fl our beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304CrossRefPubMedGoogle Scholar
  11. Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S et al (2012) Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet 8:e1002682CrossRefPubMedPubMedCentralGoogle Scholar
  12. Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216CrossRefPubMedGoogle Scholar
  13. Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD et al (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463CrossRefPubMedGoogle Scholar
  14. Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red fl our beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962CrossRefPubMedGoogle Scholar
  15. Araújo SJ, Aslam H, Tear G, Casanova J (2005) mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 288:179–193CrossRefPubMedGoogle Scholar
  16. Asano T, Taoka M, Shinkawa T, Yamauchi Y, Isobe T, Sato D (2013) Identification of a cuticle protein with unique repeated motifs in the silkworm, Bombyx mori. Insect Biochem Mol Biol 43:344–351CrossRefPubMedGoogle Scholar
  17. Ashfaq M, Sonoda S, Tsumuki H (2007) Developmental and tissue-specifi c expression of CHS1 from Plutella xylostella and its response to chlorfluazuron. Pestic Biochem Physiol 89:20–30Google Scholar
  18. Balbiani EG (1890) E’tudes anatomiques et histologiques sur le tube digestif des Crytops. Arch Zool Exp Gen 8:1–82Google Scholar
  19. Bansal R, Mian MA, Mittapalli O, Michel AP (2012) Characterization of a chitin synthase encoding gene and effect of diflubenzuron in soybean aphid, Aphis glycines. Int J Biol Sci 8:1323–1334CrossRefPubMedPubMedCentralGoogle Scholar
  20. Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730CrossRefPubMedGoogle Scholar
  21. Barry MK, Triplett AA, Christensen AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem Mol Biol 29:319–327CrossRefPubMedGoogle Scholar
  22. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  23. Becker A, Schloder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52:433–439CrossRefPubMedGoogle Scholar
  24. Becker B (1980) Effects of polyoxin D on in vitro synthesis of peritrophic membranes in Calliphora erythrocephala. Insect Biochem 10:101–106CrossRefGoogle Scholar
  25. Behr M, Hoch M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett 579:6827–6833CrossRefPubMedGoogle Scholar
  26. Belles X, Cristino AS, Tanaka ED, Rubio M, Piulachs MD (2012) Insect MicroRNAs: from molecular mechanisms to biological roles. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic, New York, pp 30–56CrossRefGoogle Scholar
  27. Bentov S, Aflalo ED, Tynyakov J, Glazer L, Sagi A (2016) Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci Rep 6:22118CrossRefPubMedPubMedCentralGoogle Scholar
  28. Berger M, Chen H, Reutter W, Hinderlich S (2002) Structure and function of N-acetylglucosamine kinase. Eur J Biochem 269:4212–4218CrossRefPubMedGoogle Scholar
  29. Bolognesi R, Ribeiro AF, Terra WR, Ferreira C (2001) The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes. Arch Insect Biochem Physiol 47:62–75CrossRefPubMedGoogle Scholar
  30. Bouligand Y (1965) On a twisted fibrillar arrangement common to several biologic structures. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie D 261:4864–4867Google Scholar
  31. Bouligand Y (1972) Twisted fibrous arrangements in biological-materials and cholesteric mesophases. Tissue Cell 4:189–217CrossRefPubMedGoogle Scholar
  32. Brameld KA, Shrader WD, Imperiali B, Gddard WA III (1998) Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J Mol Biol 280:913–923CrossRefPubMedGoogle Scholar
  33. Brusca RC (2000) Unrevealing the history of arthropod diversification. Ann Mo Bot Gard 87:13–25Google Scholar
  34. Campbell PM, Cao AT, Hines ER, East PD, Gordon KHJ (2008) Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem Mol Biol 38:950–958CrossRefPubMedGoogle Scholar
  35. Candy DJ, Kilby BA (1962) Studies on chitin synthesis in the desert locust. J Exp Biol 39:129–140Google Scholar
  36. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338CrossRefGoogle Scholar
  37. Cattaneo F, Pasini ME, Intra J, Matsumoto M, Briani F, Hoshi M et al (2006) Identification and expression analysis of Drosophila melanogaster genes encoding β-hexosaminidases of the sperm plasma membrane. Glycobiology 16:786–800CrossRefPubMedGoogle Scholar
  38. Chen J, Liang ZK, Liang YK, Pang R, Zhang WQ (2013) Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 43:839–848CrossRefPubMedGoogle Scholar
  39. Chen J, Tang B, Chen H, Yao Q, Huang X, Chen J et al (2010) Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE 5:e10133CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chen Q, Ma E, Behar KL, Xu T, Haddad GG (2002) Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J Biol Chem 277:3274–3279CrossRefPubMedGoogle Scholar
  41. Clarke L, Temple GH, Vincent JF (1977) The effects of a chitin inhibitor-dimilin- on the production of peritrophic membrane in the locust, Locusta migratoria. J Insect Physi 23:241–246CrossRefGoogle Scholar
  42. Cohen E (1987) Chitin biochemistry: synthesis and inhibition. Annu Rev Entomol 32:71–93CrossRefGoogle Scholar
  43. Cohen E (2010) Chitin biochemistry: synthesis, hydrolysis and inhibition. Adv Insect Physiol 38:5–74CrossRefGoogle Scholar
  44. Cornman RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS ONE 4:e8345CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, Willis JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genom 18:9–22Google Scholar
  46. Cornman RS, Willis JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol 18:607–622CrossRefPubMedPubMedCentralGoogle Scholar
  47. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Bio 328:307–317CrossRefGoogle Scholar
  48. Culliney TW (2014) Chapter 8: Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management: pesticide problems, vol. 3, Springer, pp 201–225Google Scholar
  49. De Mets R, Jeuniaux C (1962) Composition of peritrophic membrane. Arch Int Physiol Biochim 70:93–96Google Scholar
  50. Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ, Beeman RW et al (2008) Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem Mol Biol 38:440–451CrossRefPubMedGoogle Scholar
  51. Dong Z, Zhang W, Zhang Y, Zhang X, Zhao P, Xia Q (2016) Identification and characterization of novel chitin-binding proteins from the larval cuticle of silkworm, Bombyx mori. J Proteome Res 15:1435Google Scholar
  52. Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028CrossRefPubMedPubMedCentralGoogle Scholar
  53. Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and posttranslational transfer to proteins. BioEssays 25:367–385CrossRefPubMedGoogle Scholar
  54. Elvin CM, Vuocolo T, Pearson RD, East IJ, Riding GA, Eisemann CH et al (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina: cDNA and deduced amino acid sequences. J Biol Chem 271:8925–8935CrossRefPubMedGoogle Scholar
  55. Fabritius HO, Sachs C, Triguero PR, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Adv Mater Sci 21:391–400Google Scholar
  56. Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF (2002) Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: a chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol 32:1723–1729CrossRefPubMedGoogle Scholar
  57. Fukamizo T, Kramer KJ (1985) Mechanism of chitin oligosaccharide hydrolysis by the binary enzyme chitinase system in insect moulting fluid. Insect Biochem 15:1–7CrossRefGoogle Scholar
  58. Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K et al (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1138–1146CrossRefPubMedGoogle Scholar
  59. Gagou ME, Kapsetaki M, Turberg A, Kafetzopoulos D (2002) Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis. Insect Biochem Mol Biol 32:141–146CrossRefPubMedGoogle Scholar
  60. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  61. Guan X, Middlebrooks BW, Alexander S, Wasserman SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci USA 103:16794–16799CrossRefPubMedGoogle Scholar
  62. Guo W, Li G, Pang Y, Wang P (2005) A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:1224–1234CrossRefPubMedGoogle Scholar
  63. Harper MS, Hopkins TL (1997) Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis). Tissue Cell 29:463–475CrossRefPubMedGoogle Scholar
  64. Harper MS, Hopkins TL, Czapla TH (1998) Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30:166–176CrossRefPubMedGoogle Scholar
  65. He N, Botelho JM, Mcnall RJ, Belozerov V, Dunn WA, Mize T et al (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol 37:135–146CrossRefPubMedGoogle Scholar
  66. Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302CrossRefPubMedGoogle Scholar
  67. Hinderlich S, Berger M, Schwarzkopf M, Effertz K, Reutter W (2000) Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur J Biochem 267:3301–3308CrossRefPubMedGoogle Scholar
  68. Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Characterization and expression of the β-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochem Mol Biol 38:478–489CrossRefPubMedGoogle Scholar
  69. Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ, Beeman RW et al (2005) Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 35:529–540CrossRefPubMedGoogle Scholar
  70. Hu X, Chen L, Xiang X, Yang R, Yu S, Wu X (2012) Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Mol Biol Rep 39:3427–3434CrossRefPubMedGoogle Scholar
  71. Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA et al (2007) Characterization of glutamine: fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding. Int J Parasitol 37:383–392CrossRefPubMedGoogle Scholar
  72. Ianiro A, Giosia MD, Fermani S, Samor C, Barbalinardo M, Valle F et al (2014) Customizing properties of β-chitin in squid pen (gladius) by chemical treatments. Marine Drugs 12:5979–5992CrossRefPubMedPubMedCentralGoogle Scholar
  73. Iconomidou VA, Willis JH, Hamodrakas SJ (2005) Unique features of the structural model of ‘hard’ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem Mol Biol 35:553–560CrossRefPubMedGoogle Scholar
  74. Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ (2014) CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models. Insect Biochem Mol Biol 52:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40:214–227CrossRefPubMedGoogle Scholar
  76. Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S (2012) Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS ONE 7:e49844CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jaworski E, Wang L, Margo G (1963) Synthesis of chitin in cell-free extracts of Prodenia eridania. Nature 198:790CrossRefGoogle Scholar
  78. Jensen UG, Rothmann A, Skou L, Andersen SO, Roepstorff P, Højrup P (1997) Cuticular proteins from the giant cockroach, Blaberus craniifer. Insect Biochem Mol Biol 27:109–120CrossRefPubMedGoogle Scholar
  79. Kanost MR, Zepp MK, Ladendorff NE, Andersson LA (1994) Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph of Manduca sexta larvae. Arch Insect Biochem Physiol 27:123–136CrossRefPubMedGoogle Scholar
  80. Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ, Willis JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol 37:754–760CrossRefPubMedGoogle Scholar
  81. Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM (2006) Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochem Mol Biol 36:1–9CrossRefPubMedGoogle Scholar
  82. Kato N, Mueller CR, Wessely V, Lan Q, Christensen BM (2005) Mosquito glucosamine-6-phosphate N-acetyltransferase: cDNA, gene structure and enzyme kinetics. Insect Biochem Mol Biol 35:637–646CrossRefPubMedGoogle Scholar
  83. Kawamura K, Shibata T, Saget O, Peel D, Bryant PJ (1999) A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126:211–219PubMedGoogle Scholar
  84. Kelkenberg M, Odman-Naresh J, Muthukrishnan S, Merzendorfer H (2015) Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem Mol Biol 56:21–28CrossRefPubMedGoogle Scholar
  85. King-Jones K, Thummel CS (2005) Nuclear receptors-a perspective from Drosophila. Nat Rev Genet 6:311–323CrossRefPubMedGoogle Scholar
  86. Koga D, Funakoshi T, Mizuki K, Ide A, Kramer KJ, Zen KC et al (1992) Immunoblot analysis of chitinolytic enzymes in integument and molting fluid of the silkworm, Bombyx mori, and the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 22:305–311CrossRefGoogle Scholar
  87. Koga D, Mai MS, Dziadik-Turner C, Kramer KJ (1982) Kinetics and mechanism of exochitinase and β-N-acetylhexosaminidase from the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae). Insect Biochem 12:493–499CrossRefGoogle Scholar
  88. Kokuho T, Yasukochi Y, Watanabe S, Inumuru S (2007) Molecular cloning and expression of two novel β-N-acetylglucosaminidases from silkworm Bombyx mori. Biosci Biotechnol Biochem 71:1626–1635CrossRefGoogle Scholar
  89. Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23:691–701CrossRefPubMedGoogle Scholar
  90. Kramer KJ, Dziadik-Turner C, Koga D (1985) Chitin metabolism in insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 3. Pergamon Press, Oxford, pp 75–115Google Scholar
  91. Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25:1067–1080CrossRefGoogle Scholar
  92. Kramer KJ, Koga D (1986) Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochem 16:851–877CrossRefGoogle Scholar
  93. Kucharski R, Maleszka J, Maleszka R (2007) Novel cuticular proteins revealed by the honey bee genome. Insect Biochem Mol Biol 37:128–134CrossRefPubMedGoogle Scholar
  94. Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550CrossRefPubMedGoogle Scholar
  95. Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281:4867–4875CrossRefPubMedGoogle Scholar
  96. Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y et al (2015) Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–54CrossRefPubMedGoogle Scholar
  97. Liu T, Zhang HT, Liu FY, Wu QY, Shen X, Yang Q (2011) Structural determinants of an insect β-N-acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem 286:4049–4058Google Scholar
  98. Liu XJ, Zhang HH, Li S, Zhu KY, Ma EB, Zhang JZ (2012) Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Insect Biochem Mol Biol 42:902–910CrossRefPubMedGoogle Scholar
  99. Liu XJ, Li F, Li DQ, Ma EB, Zhang WQ, Zhu KY et al (2013) Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust, Locusta migratoria. PLoS One 8:e71970Google Scholar
  100. Liu XJ, Sun YW, Cui M, Ma EB, Zhang JZ (2016) Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica 49:4375–4386Google Scholar
  101. Liu XJ, Sun YW, Li DQ, Li S, Ma EB, Zhang JZ (2018) Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria. Insect Sci 25:211–221CrossRefPubMedGoogle Scholar
  102. Locke M (2001) The Wigglesworth lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507CrossRefPubMedGoogle Scholar
  103. Locke M, Huie P (1979) Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect. Tissue Cell 11:277–291CrossRefPubMedGoogle Scholar
  104. Lu JB, Luo XM, Zhang XY, Pan PL, Zhang CX (2018) An ungrouped cuticular protein is essential for normal endocuticle formation in the brown planthopper. Insect Biochem Mol Biol 100:1–9CrossRefPubMedGoogle Scholar
  105. Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194CrossRefPubMedGoogle Scholar
  106. Lyonet P (1762) Trait’e Anatomique de la Chenille qui ronge le bois de Saule. Haye, Holland, LaGoogle Scholar
  107. Makki R, Cinnamon E, Gould AP (2014) The development and functions of oenocytes. Annu Rev Entomol 59:405–425CrossRefPubMedGoogle Scholar
  108. Mansur JF, Alvarenga ES, Figueira-Mansur J, Franco TA, Ramos IB, Masuda H et al (2014) Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus. Insect Biochem Mol Biol 51:110–121CrossRefPubMedGoogle Scholar
  109. Marschall HU, Matern H, Wietholtz H, Egestad B, Matern S, Sjövall J (1992) Bile acid N-acetylglucosaminidation in vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans. J Clin Invest 89:1981–1987CrossRefPubMedPubMedCentralGoogle Scholar
  110. Martins GF, Ramalho-Ortiago JM (2012) Oenocytes in insects. Inverteb Surviv J 9:139–152Google Scholar
  111. Maue L, Meissner D, Merzendorfer H (2009) Purification of an active, oligomeric chitin synthase complex from the midgut of the tobacco hornworm. Insect Biochem Mol Biol 39:654–659CrossRefPubMedGoogle Scholar
  112. Merzendorfer H (2006) Insect chitin synthases: a review. J Comput Physiol B 176:1–15CrossRefGoogle Scholar
  113. Merzendorfer H (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20:121–138CrossRefPubMedGoogle Scholar
  114. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412CrossRefPubMedGoogle Scholar
  115. Mitsumasu K, Azuma M, Niimi T, Yamashita O, Yaginuma T (2005) Membrane-penetrating trehalase from silkworm Bombyx mori: molecular cloning and localization in larval midgut. Insect Mol Biol 14:501–508CrossRefPubMedGoogle Scholar
  116. Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C (2005) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264:117–130CrossRefPubMedGoogle Scholar
  117. Moussian B, Tång E, Tonning A, Helms S, Schwarz H, Nüsslein-Volhard C et al (2006) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171CrossRefPubMedGoogle Scholar
  118. Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39(Suppl. 1):41–53CrossRefPubMedGoogle Scholar
  119. Muthukrishnan S, Arakane Y, Yang Q, Zhang C-X, Zhang J, Zhang W et al (2018) Future questions in insect chitin biology: a microreview. Arch Insect Biochem Physiol 98:e21454.  https://doi.org/10.1002/arch.21454CrossRefPubMedGoogle Scholar
  120. Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin metabolism in insects. In: Biol Insect Biochem Mol (ed) Gilbert LI. Elsevier, San Diego, pp 193–235Google Scholar
  121. Nagamatsu Y, Yanagisawa I, Kimoto M, Okamoto E, Koga D (1995) Purification of a chitooligosaccharidolytic β-N-acetylglucosaminidase from Bombyx mori larvae during metamorphosis and the nucleotide sequence of its cDNA. Biosci Biotechnol Biochem 59:219–225CrossRefPubMedGoogle Scholar
  122. Nakabachi A, Shigenobu S, Miyagishima S (2010) Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:175–185CrossRefPubMedGoogle Scholar
  123. Neville AC (1975) Biology of the arthropod cuticle. Springer, BerlinCrossRefGoogle Scholar
  124. Neville AC, Luke BM (1969) A two-system model for chitin-protein complexes in insect cuticles. Tissue Cell 1:689–707CrossRefPubMedGoogle Scholar
  125. Noble-Nesbitt J (1991) Cuticular permeability and its control. In: Binnington K, Retnakaran A (eds) Physiology of the insect epidermis Melbourne. CSIRO, Australia, pp 240–251Google Scholar
  126. Ono M, Kato S (1968) Amino acid composition of the peritrophic membrane in the silkworm, Bombyx mori L. Bull Sericult Exp Stn Jpn 23:1–8Google Scholar
  127. Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182PubMedPubMedCentralGoogle Scholar
  128. Palaka BK, Sapam TD, Ilavarasi AV, Chowdhury S, Sk Rajendiran, Khan MB et al (2017) Molecular cloning and characterization of phosphoacetylglucosamine mutase from Bombyx mori. J Entomol Zool Studies 5:1166–1178Google Scholar
  129. Pan PL, Ye YX, Lou YH, Lu JB, Cheng C, Shen Y, Moussian B, Zhang CX (2018) A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper. Proc Natl Acad Sci USA 115:5175–5180CrossRefPubMedGoogle Scholar
  130. Pan Y, Lu P, Wang Y, Yin L, Ma H, Ma G et al (2012) In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J Insect Sci 12:150CrossRefPubMedPubMedCentralGoogle Scholar
  131. Park JT (2001) Identification of a dedicated recycling pathway for an hydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein. J Bacteriol 183:3842–3847CrossRefPubMedPubMedCentralGoogle Scholar
  132. Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V et al (2001) Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 20:6191–6202CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pesch YY, Riedel D, Behr M (2015) Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 290:10071–10082CrossRefPubMedPubMedCentralGoogle Scholar
  134. Peters W (1992) Peritrophic membranes, vol 30. Zoophysiology. Springer, BerlinGoogle Scholar
  135. Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin. Histochemistry 84:155–160CrossRefPubMedGoogle Scholar
  136. Petkau G, Wingen C, Jussen LC, Radtke T, Behr M (2012) Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287:21396–21405CrossRefPubMedPubMedCentralGoogle Scholar
  137. Qu M, Ma L, Chen P, Yang Q (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13:2931–2940CrossRefPubMedGoogle Scholar
  138. Qu M, Yang Q (2011) A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis - Gene organization, expression pattern and physiological significance. Insect Biochem Mol Biol 41:923–931CrossRefPubMedGoogle Scholar
  139. Qu M, Yang Q (2012) Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect Ostrinia furnacalis (Lepidoptera). Insect Mol Biol 21:395–404CrossRefPubMedGoogle Scholar
  140. Raabe D, Al-Sawalmih A, Romano P, Sachs C, Brokmeier HG, Yi SB et al. (2005a) Structure and crystallographic texture of arthropod bio-composites. Icotom 14: Texture of Materials, Pts 1 and 2: 495–497 and 1665–1674Google Scholar
  141. Raabe D, Romano P, Sachs C (2005b) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292CrossRefGoogle Scholar
  142. Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier HG, Yi SB et al (2005c) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283:1–7CrossRefGoogle Scholar
  143. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S-B et al (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng, A 421:143–153CrossRefGoogle Scholar
  144. Ramos A, Mahowald A, Jacobs-Lorena M (1994) Peritrophic matrix of the black fly Simulium vittatum: formation, structure, and analysis of its protein components. J Exp Zool 268:269–281CrossRefPubMedGoogle Scholar
  145. Rebers JE, Riddiford LI (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 203:411–423CrossRefPubMedGoogle Scholar
  146. Rebers JE, Willis JH (2001a) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol 31:1083–1094CrossRefPubMedGoogle Scholar
  147. Reger JF (1971) Fine structure of the surface coat of midgut epithelial cells in the homopteran Phyllosclis atra (Fulgorid). J Submicrosc Cytol 3:353–358Google Scholar
  148. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083CrossRefPubMedGoogle Scholar
  149. Rebers JE, Willis JH (2001b) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol 31:1083–1094CrossRefPubMedGoogle Scholar
  150. Reynolds SE, Samuels RI (1996) Physiology and biochemistry of insect moulting fluid. Adv Insect Physiol 26:157–232CrossRefGoogle Scholar
  151. Richards AG, Richards PA (1977) The peritrophic membranes of insects. Annu Rev Entomol 22:219–240CrossRefPubMedGoogle Scholar
  152. Riddiford L, Cherbas P, Truman JW (2001) Ecdysone receptors and their biological actions. Vitam Horm 60:1–73Google Scholar
  153. Rong S, Li D, Zhang X, Li S, Zhu KY et al (2013) β-N-acetylglucosaminidase gene is essential for larval-larval and larval-adult molting in Locusta migratoria. Insect Sci 20:109–119CrossRefPubMedGoogle Scholar
  154. Ruddal KM (1963) The chitin–protein complexes of insect cuticles. Adv Insect Physiol 1:257–313CrossRefGoogle Scholar
  155. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–636CrossRefGoogle Scholar
  156. Schimmelpfeng K, Strunk M, Stork T, Klambt C (2006) Mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development. Mech Dev 123:487–499CrossRefPubMedGoogle Scholar
  157. Schorderet S, Pearson RD, Vuocolo T, Eisemann C, Riding GA, Tellam RL (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48’, from the larvae of Lucilia cuprina. Insect Biochem Mol Biol 28:99–111CrossRefPubMedGoogle Scholar
  158. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Dev Biol 259:9–18CrossRefPubMedGoogle Scholar
  159. Shao L, Devenport M, Jacobs-Lorena M (2001) The peritrophic matrix of hematophagous insects. Arch Insect Biochem Physiol 47:119–125CrossRefPubMedGoogle Scholar
  160. Shi X, Chamankhah M, Visal-Shah S, Hemmingsen SM, Erlandson M, Braun L et al (2004) Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem Mol Biol 34:1101–1115CrossRefPubMedGoogle Scholar
  161. Shi JF, Fu J, Mu LL, Guo WC, Li GQ (2016a) Two Leptinotarsa uridine diphosphate N-acetylglucosamine pyrophosphorylases are specialized for chitin synthesis in larval epidermal cuticle and midgut peritrophic matrix. Insect Biochem Mol Biol 68:1–12CrossRefPubMedGoogle Scholar
  162. Shi ZK, Liu X, Xu Q, Qin Z, Wang S, Zhang F et al (2016b) Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comput Biochem Physiol 198:10–18CrossRefGoogle Scholar
  163. Shirk PD, Perera OP, Shelby KS, Furlong RB, LoVullo ED, Popham HJR (2015) Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths. Gene 574:121–139CrossRefPubMedGoogle Scholar
  164. Silva CP, Terra WR (1995) An α-glucosidase from perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells. Purification and properties. Insect Biochem Mol Biol 25:487–494CrossRefGoogle Scholar
  165. Smibert P, Lai EC (2008) Lessons from microRNA mutants in worms, flies and mice. Cell Cycle 7:2500–2508CrossRefPubMedPubMedCentralGoogle Scholar
  166. Song TQ, Yang ML, Wang YL, Liu Q, Wang HM, Zhang J et al (2016) Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Insect Sci 23:520–530CrossRefPubMedGoogle Scholar
  167. Specht CA, Liu Y, Robbins PW, Bulawa CE, Iartchouk N, Winter KR et al (1996) The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Funfal Genet Bio 20:153–167CrossRefGoogle Scholar
  168. Takiguchi M, Niimi T, Su ZH, Yaginuma T (1992) Trehalase from male accessory gland of an insect, Tenebrio molitor, cDNA sequencing and developmental profile of the gene expression. Biochem J 288:19–22CrossRefPubMedPubMedCentralGoogle Scholar
  169. Tang B, Wei P, Zhao L, Shi Z, Shen Q, Yang M et al (2016) Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathway in Tribolium castaneum. BMC Biotechnol 16:67CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD (2000) Insect chitin synthase cDNA sequence, gene organization and expression. Eur J Biochem 267:6025–6043CrossRefPubMedGoogle Scholar
  171. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101CrossRefPubMedGoogle Scholar
  172. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61CrossRefPubMedGoogle Scholar
  173. Tetreau G, Cao XL, Chen YR, Muthukrishnan S, Jiang H, Blissard GW et al (2015a) Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114–126CrossRefPubMedGoogle Scholar
  174. Tetreau G, Dittmer NT, Cao X, Agrawal S, Chen YR, Muthukrishnan S et al (2015b) Analysis of chitin-1 binding proteins from Manduca sexta provides new insights into evolution of peritrophin A type chitin-binding domains in insects. Insect Biochem Mol Biol 62:27–41Google Scholar
  175. Thompson SN (2002) Trehalose – the insect ‘blood’ sugar. Adv Insect Physiol 31:205–285CrossRefGoogle Scholar
  176. Thummel CS (2002) Ecdysone-regulated puff genes 2000. Insect Biochem Mol Biol 32:113–120CrossRefPubMedGoogle Scholar
  177. Togawa T, Dunn WA, Emmons AC, Willis JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem Mol Biol 37:675–688CrossRefPubMedGoogle Scholar
  178. Togawa T, Natkato H, Izumi S (2004) Analysis of the chitin recognition mechanim of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem Mol Biol 34:1059–1067CrossRefPubMedGoogle Scholar
  179. Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, Singh S et al (2006) Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 β-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560CrossRefPubMedGoogle Scholar
  180. Tonning A, Helms S, Schwarz H, Uv AE, Moussian B (2006) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133:331–341CrossRefPubMedGoogle Scholar
  181. Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C et al (2016) Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Sci 23:656–674CrossRefPubMedGoogle Scholar
  182. Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18:305–312CrossRefPubMedGoogle Scholar
  183. Valdivieso MH, Duran A, Roncero C (1999) Chitin synthases in yeast and fungi. Experientia Supplementrum 87:55–69Google Scholar
  184. Vannini L, Bowen JH, Reed TW, Willis JH (2015) The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea. Insect Biochem Mol Biol 65:57–67CrossRefPubMedPubMedCentralGoogle Scholar
  185. Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199CrossRefPubMedGoogle Scholar
  186. Wang P, Granados RR (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci USA 94:6977–6982CrossRefPubMedGoogle Scholar
  187. Wang P, Granados RR (2000) Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135–143CrossRefPubMedGoogle Scholar
  188. Wang S, Jayaram SA, Hemphala J, Senti KA, Tsarouhas V, Jin H et al (2006) Septatejunction- dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr Biol 16:180–185CrossRefPubMedGoogle Scholar
  189. Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY et al (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 42:637–646CrossRefPubMedGoogle Scholar
  190. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922CrossRefPubMedGoogle Scholar
  191. Wigglesworth VB (1930) The formation of the peritrophic membrane in insects, with special reference to the larvae of mosquitoes. Q J Microsc Sci 73:593–616Google Scholar
  192. Willis JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40:189–204CrossRefPubMedPubMedCentralGoogle Scholar
  193. Willis JH, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2012) Cuticular proteins. In: Li Gilbert (ed) Insect molecular biology and biochemistry. Academic, San Diego, pp 134–166CrossRefGoogle Scholar
  194. World Health Organization (2017) World malaria report 2017. Switzerland, World Health Organization, Geneva, p 160CrossRefGoogle Scholar
  195. Xi Y, Pan PL, Ye YX, Yu B, Zhang CX (2014) Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol Biol 23:695–705CrossRefPubMedGoogle Scholar
  196. Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 24:29–40CrossRefGoogle Scholar
  197. Yang ML, Wang YL, Jiang F, Song TQ, Wang HM, Liu Q et al (2016) miR-71 and miR-263 Jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genet 12:e1006257CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yang Q, Liu T, Liu FY, Qu MB, Qian XH (2008) A novel β-N-acetyl-D-hexosaminidase from the insect Ostrinia furnacalis (Guenée). FEBS J 275:5690–5702CrossRefPubMedGoogle Scholar
  199. Yang WJ, Wu YB, Chen L, Xu KK, Xie YF, Wang JJ (2015) Two chitin biosynthesis pathway genes in Bactrocera dorsalis (Diptera: Tephritidae): molecular characteristics, expression patterns, and roles in larval-pupal transition. J Econ Entomol 108:2433–2442CrossRefPubMedGoogle Scholar
  200. Yang WJ, Xu KK, Cong L, Wang JJ (2013) Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, Bactrocera dorsalis. Int J Biol Sci 9:331–342CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yao Q, Zhang DW, Tang B, Chen J, Chen J, Lu L et al (2010) Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS ONE 5:e14058CrossRefPubMedPubMedCentralGoogle Scholar
  202. Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M et al (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479CrossRefPubMedGoogle Scholar
  203. Yu RR, Liu WM, Li DQ, Zhao XM, Ding GW, Zhang M et al (2016) Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase2 enzyme (LmCDA2). J Biol Chem 291:24352–24363CrossRefPubMedPubMedCentralGoogle Scholar
  204. Yu X, Zhou Q, Li SC, Luo Q, Cai Y, Lin WC et al (2008) The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS ONE 3:e2997CrossRefPubMedPubMedCentralGoogle Scholar
  205. Zen KC, Choi HK, Nandigama K, Muthukrishnan S, Kramer KJ (1996) Cloning, expression and hormonal regulation of an insect β-N-acetylglucosaminidase gene. Insect Biochem Mol Biol 26:435–444CrossRefPubMedGoogle Scholar
  206. Zhang J, Liu X, Li D, Sun Y, Guo Y, Ma E et al (2010) Silencing of two alternative splicing derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40:824–833CrossRefPubMedGoogle Scholar
  207. Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E et al (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS ONE 6:e19899CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W (2012a) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234CrossRefPubMedGoogle Scholar
  209. Zhang X, Zhang J, Park Y, Zhu KY (2012b) Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 42:674–682CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zhao LN, Yang MM, Shen QD, Shi ZK, Wang SG, Tang B (2016) Knockdown of three trehalases regulating trehalose and chitin metabolism in the rice brown planthopper Nilaparvata lugens. Sci Rep 6:27841CrossRefPubMedPubMedCentralGoogle Scholar
  211. Zhao XM, Gou X, Qin ZY, Li DQ, Wang Y, Ma EB et al (2017) Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Sci Rep 7:45462CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zheng YP, Retnakaran A, Krell PJ, Arif BM, Primavera M, Feng QL (2003) Temporal, spatial and induced expression of chitinase in the spruce budworm, Choristoneura fumiferana. J Insect Physiol 49:241–247CrossRefPubMedGoogle Scholar
  213. Zhong Y-S, Mita K, Shimada T, Kawasaki H (2006) Glycine-rich protein genes, which encode a major component of the cuticle protein genes in Bombyx mori. Insect Biochem Mol Biol 36:99–110CrossRefPubMedGoogle Scholar
  214. Zhou Y, Badgett MJ, Orlando R, Willis JH (2019) Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochem Mol Biol 104:91–105Google Scholar
  215. Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196CrossRefPubMedGoogle Scholar
  216. Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466CrossRefPubMedGoogle Scholar
  217. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105:6650–6655CrossRefPubMedGoogle Scholar
  218. Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S, Kramer KJ (2004) Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics 20:161–169CrossRefPubMedGoogle Scholar
  219. Zhu YC, Specht CA, Dittmer NT, Muthukrishnan S, Kanost MR, Kramer KJ (2002) Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochem Mol Biol 32:1497–1506CrossRefPubMedGoogle Scholar
  220. Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H (2005) Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 35:515–527CrossRefPubMedGoogle Scholar
  221. Zimmermann U, Mehlan D, Peters W (1975) Investigations on the transport function and structure of peritrophic membranes; V - Amino acid analysis and electron microscopic investigations of the peritophic membranes of the blowfly Calliphora erythrocephala Mg. Comp Biochem Physiol 51B:181–186Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Research Institute of Applied Biology, Shanxi UniversityTaiyuanChina
  2. 2.Department of EntomologyKansas State UniversityManhattanUSA

Personalised recommendations