Advertisement

Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle

  • Subbaratnam MuthukrishnanEmail author
  • Hans Merzendorfer
  • Yasuyuki Arakane
  • Qing Yang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)

Abstract

Chitin, the extracellular matrix polysaccharide of insects and arthropods is widely distributed in nature in all kingdoms of life and serves a variety of functions. After synthesis by membrane-bound chitin synthases, it is extensively remodeled before incorporation into divergent matrices with wide-ranging physical and biological properties. This chapter discusses the properties of a variety of insect enzymes and proteins involved in this process. Chitin remodeling involves chitin synthases, which make the nascent chitin chains, and chitin deacetylases that partially deacetylate some of the N-acetylglucosamine residues either randomly or sequentially to yield local chitosan-like regions. Other proteins secreted into the procuticle or the midgut help in the assembly of single chitin chains into larger crystalline aggregates that measure in a few 100 nanometers. They are further embedded in a complex matrix of cuticular proteins or become associated with proteins containing chitin-binding domains to constitute the laminar procuticle or the lattice-like peritrophic matrix. During molting, previously formed laminar cuticle or PM are decrystallized/depolymerized to unmask the chitin chains, which then are degraded by a mixture of chitinolytic enzymes consisting of chitinases and N-acetylglucosaminidases present in molting fluid or in gut secretions. Some of the degradation products may be recycled for the synthesis of new matrices. We present a model of chitin synthesis, assembly, and degradation and the roles of these chitin-remodeling enzymes in this overall process.

Keywords

Chitin Chitin remodeling Chitin synthase Chitinase Chitin deacetylase N-acetylglucosaminidase Knickkopf Cuticular proteins Peritrophic matrix 

Notes

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (2018R1A2B6005106) to YA.

References

  1. Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ, Beeman RW, Park Y, Muthukrishnan S, Merzendorfer H (2014) Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol 49:24–34CrossRefPubMedGoogle Scholar
  2. Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol 33:631–648CrossRefPubMedGoogle Scholar
  3. Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA et al (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304CrossRefPubMedGoogle Scholar
  4. Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y et al (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463CrossRefPubMedGoogle Scholar
  5. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008a) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008b) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962CrossRefPubMedGoogle Scholar
  7. Arakane Y, Dixit R, Begum K, Park Y, Specht CA et al (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355–365CrossRefPubMedGoogle Scholar
  8. Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216CrossRefPubMedGoogle Scholar
  9. Barbehenn RV (2001) Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Biochem Physiol 47:86–99CrossRefPubMedGoogle Scholar
  10. Beckham GT, Crowley MF (2011) Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. J Phys Chem B 115:4516–4522CrossRefPubMedGoogle Scholar
  11. Bolognesi R, Terra WR, Ferreira C (2008) Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models. J Insect Physiol 54:1413–1422CrossRefPubMedGoogle Scholar
  12. Brameld KA, Shrader WD, Imperiali B, Goddard WAIII (1998) Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J Mol Biol 280:913–923CrossRefPubMedGoogle Scholar
  13. Chaudhari SS, Arakane Y, Specht CA, Moussian B, Boyle DL et al (2011) Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci USA 108:17028–17033CrossRefPubMedGoogle Scholar
  14. Chaudhari SS, Moussian B, Specht CA, Arakane Y, Kramer KJ, Beeman RW, Muthukrishnan S (2014) Functional specialization among members of Knickkopf family of proteins in insect cuticle organization. PLoS Genet 2014(10):e1004537CrossRefGoogle Scholar
  15. Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q (2014) Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. Acta Crystallographica D Biol Crystallogr 70:932–942CrossRefGoogle Scholar
  16. Chen C, Yang H, Tang B, Yang WJ, Jin DC (2017) Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comput Biochem Physiol B: Biochem Mol Biol 208–209:19–28CrossRefGoogle Scholar
  17. Chen X, Xu K, Yan X, Chen C, Cao Y, Wang Y, Li C, Yang W (2018a) Characterization of a β-N-acetylglucosaminidase gene and its involvement in the development of Lasioderma serricorne (Fabricius). Stored Product Res 77:156–165CrossRefGoogle Scholar
  18. Chen W, Qu M, Zhou Y (2018b) Qing Y (2018) Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 293:2652–2660CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cohen E (2010) Chitin biochemistry: synthesis, hydrolysis and inhibition. In: Jérôme C, Stephen JS (eds) Advances in insect physiology, vol 38. Academic Press, New York, pp 5–74Google Scholar
  20. Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR, 3r, Jacobs-Lorena, M (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39:125–134Google Scholar
  21. Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles from the elytra and hindwings of the red flour beetle. Tribolium castaneum. J. Proteome Research 11:269–278CrossRefGoogle Scholar
  22. Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ et al (2008) Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem Mol Biol 38:440–451CrossRefPubMedGoogle Scholar
  23. Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dziadik-Turner C, Koga D, Mai MS, Kramer KJ (1981) Purification and characterization of two β-N-acetylhexosaminidases from the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Arch Biochem Biophys 21:546–560CrossRefGoogle Scholar
  25. Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina: Mechanism of action. Ent Exp Appl 72:1–10CrossRefGoogle Scholar
  26. Fabritius HO, Sachs C, Triguero PR, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The Exoskeleton of the Lobster Homarus americanus. Adv Mater Sci 21:391–400Google Scholar
  27. Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF (2002) Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: A chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol 32:1723–1729CrossRefPubMedGoogle Scholar
  28. Fukamizo T, Kramer KJ (1985) Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem 15:141–145CrossRefGoogle Scholar
  29. Gohlke S, Muthukrishnan S, Merzendorfer H (2017) In Vitro and In Vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 18:E702CrossRefPubMedGoogle Scholar
  30. Grifoll-Romero L, Pascual S, Aragunde H, Biarnés X, Planas A (2018) Chitin deacetylases: structures. Specific Biotech Appl Polymers 10:352Google Scholar
  31. Guo W, Li G, Pang Y, Wang P (2005) A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:1224–1234CrossRefPubMedGoogle Scholar
  32. Harper MS, Hopkins TL (1997) Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis). Tissue Cell 29:463–475CrossRefPubMedGoogle Scholar
  33. He B, Chu Y, Yin M, Müllen K, An C, Shen J (2013) Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater 25:4580–4584CrossRefPubMedGoogle Scholar
  34. Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302CrossRefPubMedGoogle Scholar
  35. Henrissat B (1991) A classification of glycosylhydrolases based on amino acid sequence similarities. Bochem J. 280:309–316CrossRefGoogle Scholar
  36. Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ et al (2005) Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 35:529–540CrossRefPubMedGoogle Scholar
  37. Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Characterization and expression of the & #x03B2;-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochem Mol Biol 38:478–489CrossRefPubMedGoogle Scholar
  38. Hopkins TL, Harper MS (2001) Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47:100–109CrossRefPubMedGoogle Scholar
  39. Hamodrakas SJ, Willis JH, Iconomidou VA (2005) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem Molec Biol 32:1577–1583CrossRefGoogle Scholar
  40. Intra J, Pavesi G, Horner DS (2008) Phylogenetic analyses suggest multiple changes of substrate specificity within the glycosyl hydrolase 20 family. BMC Evol Biol 8:214CrossRefPubMedPubMedCentralGoogle Scholar
  41. Iyer LM, Anantharaman V, Aravind L (2007) The Domon domains are involved in heme and sugar recognition. Bioinformatics 23:2660–2664CrossRefPubMedGoogle Scholar
  42. Jakubowska AK, Caccia S, Gordon KH, Ferre J, Herrero S (2010) Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J Virol 84:2547–2555CrossRefPubMedGoogle Scholar
  43. Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40:214–227CrossRefPubMedGoogle Scholar
  44. Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S (2012) Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS ONE 7:e49844CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kawamura K, Shibata T, Saget O, Peel D, Bryant PJ (1999) A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126:211–219PubMedGoogle Scholar
  46. Kaya M, Baran T, Erdoğan S, Menteş A, Özüsağlam MA, Çakmak YS (2014) Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater Sci Eng 45:72–81CrossRefGoogle Scholar
  47. Kelkenberg M, Odman-Naresh J, Muthukrishnan S, Merzendorfer H (2015) Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem Mol Biol 56:21–28CrossRefPubMedGoogle Scholar
  48. Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629CrossRefPubMedGoogle Scholar
  49. Kimura S (1976) Insect haemolymph exo-β -N-acetylglucosaminidase from Bombyx mori. Purification and properties. Biochim Biophys Acta 446:399–406CrossRefPubMedGoogle Scholar
  50. Koga D, Mai MS, Dziadik-Turner C, Kramer KJ (1982) Kinetics and mechanism of exochitinase and ß-N-acetylhexosaminidase from the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae). Insect Biochem 12:493–499CrossRefGoogle Scholar
  51. Koga D, Sasaki Y, Uchiumi Y, Hirai N, Arakane Y, Nagamatsu Y (1997) Purification and characterization of Bombyx mori chitinases. Insect Biochem Mol Biol 27:757–767CrossRefPubMedGoogle Scholar
  52. Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23:691–701CrossRefPubMedGoogle Scholar
  53. Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281:4867–4875CrossRefPubMedGoogle Scholar
  54. Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin binding. PLoS ONE 5:e8654CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li D, Zhang J, Wang Y, Liu X, Ma E et al (2015) Two chitinase 5 genes from Locusta migratoria: Molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–54CrossRefPubMedGoogle Scholar
  56. Li K, Zhang X, Lou W, Zhang J, Moussian B (2017) Timed Knickkopf function is essential for wing cuticle formationin Drosophila melanogaster. Insect Biochem Mol Biol 89:1–10CrossRefPubMedGoogle Scholar
  57. Liu T, Zhang H, Liu F, Wu Q, Shen X, Yang Q (2011) Structural determinants of an insect & #x03B2;-N-acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem 286:4049–4058CrossRefPubMedGoogle Scholar
  58. Liu F, Liu T, Qu M, Yang Q (2012) Molecular and biochemical characterization of a novel β-N-acetyl-D-hexosaminidase with broad substrate-spectrum from the Asian corn borer. O. furnacalis. Int J Biol Sci 8:1085–1096CrossRefGoogle Scholar
  59. Liu XJ, Li F, Li DQ, Ma EB, Zhang WQ, Zhu KY, Zhang JZ (2013) Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust. Locusta migratoria. PLoS ONE 8:e71970CrossRefPubMedGoogle Scholar
  60. Liu T, Zhu W, Wang J, Zhou Y, Duan Y, Qu M, Yang Q (2018) The deduced role of a chitinase containing two non-synergistic catalytic domains. Acta Cryst D74:21–29Google Scholar
  61. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, Horn SJ, Vaaje-Kolstad G, van Aalten DMF, Eijsink VGH (2017) Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep 7:1746CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lu YM, Zen KC, Muthukrishnan S, Kramer KJ (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32:1369–1382CrossRefPubMedGoogle Scholar
  63. Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194CrossRefPubMedGoogle Scholar
  64. Maue L, Meissner D, Merzendorfer H (2009) Purification of an active, oligomeric chitin synthase complex from the midgut of the tobacco hornworm. Insect Biochem Mol Biol 39:654–659CrossRefPubMedGoogle Scholar
  65. Merzendorfer H (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20:121–138Google Scholar
  66. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412CrossRefPubMedGoogle Scholar
  67. Merzendorfer H, Kelkenberg M, Muthukrishnan S (2016) Peritrophic matrices. In: Moussian B, Cohen E (eds) Extracellular composite matrices in arthropods, Chap. 8. Springer, Switzerland, pp 255–324Google Scholar
  68. Miller N, Lehane MJ (1993) Ionic environment and the permeability properties of the peritrophic membrane of Glossina morsitans morsitans. J Insect Physiol 631:139–144CrossRefGoogle Scholar
  69. Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:329–334CrossRefPubMedPubMedCentralGoogle Scholar
  70. Moussian B, Tang E, Tonning A, Helms S, Schwarz H et al (2005) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171CrossRefGoogle Scholar
  71. Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin metabolism in insects. In: Gilbert LI (ed) Insect biochemistry and molecular biology. Elsevier, San Diego, pp.193–235Google Scholar
  72. Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q (2016) Chitin metabolic pathways in insects and their regulation. In: Moussian B, Cohen E (eds) Extracellular composite matrices in arthropods, Chap. 2. Springer, Switzerland, pp 31–65Google Scholar
  73. Muzzarelli RAA (1973) Chitin. In: Muzzarelli RAA (ed) Natural chelating polymers: alginic acid, chitin, and chitosan. Pergamon Press, New York, pp 83–252Google Scholar
  74. Nagamatsu Y, Yanagisawa I, Kimoto M, Okamoto E, Koga D (1995) Purification of a chitooligosaccharidolytic beta-N-acetylglucosaminidase from Bombyx mori larvae during metamorphosis and the nucleotide sequence of its cDNA. Biosci Biotechnol Biochem 59:219–225CrossRefPubMedGoogle Scholar
  75. Neville AC, Parry DA, Woodhead-Galloway J. (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21:73–82Google Scholar
  76. Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem Mol Biol. 53:22–29Google Scholar
  77. Noh M, Muthukrishnan S, Kramer KJ, Arakane Y (2018a) A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLOS Genetics|  https://doi.org/10.1371/journal.pgen.1007307
  78. Noh M, Muthukrishnan S, Kramer KJ, Arakane Y (2018b) Group I chitin deacetylases are essential for higher order organization of chitin fibers in beetle cuticle. J Biol Chem 293:6985–6995CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182PubMedPubMedCentralGoogle Scholar
  80. Pesch YY, Riedel D, Behr M (2015) Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 290:10071–10082CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pesch Y, Riedel D, Patil KR, Loch G, Behr M (2016a) Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6, Article number:18340CrossRefGoogle Scholar
  82. Pesch Y, Riedel D, Loch G, Behr M (2016b) Drosophila chitinase 2 is expressed in chitin producing organs for cuticle formation. Arthropod Struct Dev 46:4–12CrossRefPubMedGoogle Scholar
  83. Petkau G, Wingen C, Jussen LC, Radtke T, Behr M (2012) Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287:21396–21405CrossRefPubMedPubMedCentralGoogle Scholar
  84. Qu M, Yang Q (2011) A novel alternative splicing site of class A chitin synthase from the insect O. furnacalis- Gene organization, expression pattern and physiological significance. Insect Biochem Mol Biol 41:923–931CrossRefPubMedGoogle Scholar
  85. Qu M, Yang Q (2012) Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect O. furnacalis (Lepidoptera). Insect Mol Biol 21:395–404CrossRefPubMedGoogle Scholar
  86. Qu M, Ma L, Chen P, Yang Q (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13:2931–2940CrossRefPubMedGoogle Scholar
  87. Qu M, Ren Y, Liu Y, Yang Q (2017) Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. Insect Molec Biol 26432–439Google Scholar
  88. Reynolds SE, Samuels RI (1996) Physiology and biochemistry of insect molting fluid. Adv Insect Physiol 26:157–232CrossRefGoogle Scholar
  89. Sacristan C, Manzano‐Lopez J, Reyes A, Spang A, Muniz M, Roncero C (2013) Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Mol Microbiol 90:252–266Google Scholar
  90. Schorderet S, Pearson RD, Vuocolo T, Eisemann C, Riding GA, Tellam RL (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48’, from the larvae of Lucilia cuprina. Insect Biochem Mol Biol 28:99–111CrossRefPubMedGoogle Scholar
  91. Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670CrossRefPubMedGoogle Scholar
  92. Shirk PD, Perera OP, Shelby KS, Furlong RB, LoVullo ED, Pophamc HJR (2015) Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths. Gene 574:121–139CrossRefPubMedGoogle Scholar
  93. Su C, Tu G, Huang S, Yang Y, Shahad MF, Li F (2016) Genome-wide analysis of chitinase genes and theirvaried functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Insect Mol Biol 25:401–412CrossRefPubMedGoogle Scholar
  94. Tellam RL (1996) The peritrophic matrix. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman-Hall, Cambridge, pp. 86–114Google Scholar
  95. Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD (2000) Insect chitin synthase cDNA sequence, gene organization and expression. Eur J Biochem 267:6025–6043CrossRefPubMedGoogle Scholar
  96. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61CrossRefPubMedGoogle Scholar
  97. Tetreau G, Cao XL, Chen YR, Muthukrishnan S, Jiang HB et al (2015a) Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114–126CrossRefPubMedGoogle Scholar
  98. Tetreau G, Dittmer NT, Caoc X, Agrawal S, Chen Y-R et al (2015b) Analysis of chitin-1 binding proteins from Manduca sexta provides new insights into evolution of peritrophin A type chitin-binding domains in insects. Insect Biochem Mol Biol 62:27–41Google Scholar
  99. Tews I, van Scheltinga T, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959CrossRefGoogle Scholar
  100. Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC (2006) Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 beta-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560CrossRefPubMedGoogle Scholar
  101. Toprak U, Baldwin D, Erlandson M, Gillott C, Hegedus DD (2010) Insect intestinal mucins and serine proteases associated with the peritrophic matrix from feeding, starved and moulting Mamestra configurata larvae. Insect Mol Biol 19:163–175CrossRefPubMedGoogle Scholar
  102. Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD (2015) Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Sci.  https://doi.org/10.1111/1744-7917.12225CrossRefPubMedGoogle Scholar
  103. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink GH (2010) An oxidative enzyme boosing the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222CrossRefPubMedGoogle Scholar
  104. Varela PF, Llera AS, Mariuzza RA, Tormo J (2002) Crystal structure of imaginal disc growth factor-2. J Biol Chem 277:13229–13236CrossRefPubMedGoogle Scholar
  105. Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR (2009) The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18:33–44CrossRefPubMedGoogle Scholar
  106. Vuocolo T, Eisemann CH, Pearson RD, Willadsen P, Tellam RL (2001) Identification and molecular characterisation of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochem Mol Biol 31:919–932CrossRefPubMedGoogle Scholar
  107. Wang S, Jayaram SA, Hemphala J, Senti KA, Tsarouhas V, Jin H, Samakovlis C (2006) Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr Biol 16:180–185CrossRefPubMedGoogle Scholar
  108. Wang Y, Fan HW, Huang HJ et al (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 42:637–646CrossRefPubMedGoogle Scholar
  109. Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572PubMedGoogle Scholar
  110. Wieschaus E, Nüsslein-Volhard C, Jurgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the X-chromosome and the fourth chromosome. Wilhelm Roux’s Arch Dev Biol 193:296–307CrossRefGoogle Scholar
  111. Willis JH, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2012) Cuticular proteins. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Chapel Hill (NC): Academic, New Jersey, pp 134–166Google Scholar
  112. Wu JJ, Chen Z-C, Wang Y-W, Fu K-Y, Guo W-C, Li G-Q (2018) Silencing chitin deacetylase 2 impairs larval-pupal and pupal-adult molts in Leptinotarsa decemlineata. Insect Mol Biol In pressGoogle Scholar
  113. Xi Y, Pan PL, Ye YX, Yu B, Xu HJ et al (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 24:29–40CrossRefGoogle Scholar
  114. Xi Y, Pan PL, Ye YX, Yu B, Zhang CX (2014) Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol Biol 23:695–705CrossRefPubMedGoogle Scholar
  115. Xu G, Zhang J, Lyu H, Liu J, Ding Y, Feng Q, Zhong Q, Zheng S (2017) BmCHSA-2b, a Lepidoptera specific alternative splicing variant of epidermal chitin synthase, is required for pupal wing development in Bombyx mori. Insect Biochem Mol Biol 87:117–126CrossRefPubMedGoogle Scholar
  116. Yabe T, ToshikoY-O Nakajima T, Masayuki S, Mikio A, Hisafumi Y-O (1998) Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae: Identification of additional amino acid residues involved in its catalytic activity. Eur J Biochem 258:941–947CrossRefPubMedGoogle Scholar
  117. Yang Q, Liu T, Liu FY, Qu MB Qian XH. (2008) A novel β-N-acetyl-D-hexosaminidase from the insect O. furnacalis (Guene´e). FEBS J 275:5690–5702Google Scholar
  118. Yang WJ, Xu KK, Cong L, Wang JJ (2013) Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, Bactrocera dorsalis. Int J Biol Sci 9:331–342CrossRefPubMedPubMedCentralGoogle Scholar
  119. Yu R, Liu W, Li D, Zhao X, Ding G, Zhang M, Ma E, Zhu K-Y, Li S, Mousian B, Zhang J (2016) Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase enzyme (LmCDA2). J Biol Chem 291:24352–24363CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zees AC, Pyrpassopoulos S, Vorgias CE (2009) Insights into the role of the (alpha + beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of chitinase A from Serratia marcescens. Biochim Biophys Acta 1794:23–31CrossRefPubMedGoogle Scholar
  121. Zen KC, Choi HK, Nandigama K, Muthukrishnan S, Kramer KJ (1996) Cloning, expression and hormonal regulation of an insect β-N-acetylglucosaminidase gene. Insect Biochem Mol Biol 26:435–444CrossRefPubMedGoogle Scholar
  122. Zhang D, Chen J, Yao Q, Pan Z, Chen J et al (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234CrossRefPubMedGoogle Scholar
  123. Zhang J, Lu A, Zhang Q, Ling E (2014) Functional analysis of insect molting fluid proteins on the protection and egulation of ecdysis. J Biol Chem 289:35891–35906CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zhang J, Liu X, Li D, Sun Y, Guo Y et al (2010) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40:824–833CrossRefPubMedGoogle Scholar
  125. Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY (2011a) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS ONE 6(5):e19899CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY (2011b) Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 41:521–528CrossRefPubMedGoogle Scholar
  127. Zhong XW, Wang XH, Tan X, Xia QY, Xiang ZH, Zhao P (2014) Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. Int J Mol Sci 15:1946–1961CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zhou Y, Badgett MJ, Bowen JH, Vannini L, Orlando R, Willis JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem Mol Biol 75:45–57CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466CrossRefPubMedGoogle Scholar
  130. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol 38:467–477CrossRefPubMedGoogle Scholar
  131. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008c) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Nat Acad Sci USA 105:6650–6655CrossRefPubMedGoogle Scholar
  132. Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S et al (2004) Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics 20:161–169CrossRefPubMedGoogle Scholar
  133. Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Subbaratnam Muthukrishnan
    • 1
    Email author
  • Hans Merzendorfer
    • 2
  • Yasuyuki Arakane
    • 3
  • Qing Yang
    • 4
  1. 1.Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanUSA
  2. 2.Institute of Biology, University of SiegenSiegenGermany
  3. 3.Department of Applied BiologyChonnam National UniversityGwangjuSouth Korea
  4. 4.School of BioengineeringDalian University of TechnologyDalianChina

Personalised recommendations