Advertisement

Immune Responses of Mammals and Plants to Chitin-Containing Pathogens

  • Xi Jiang
  • Han Bao
  • Hans Merzendorfer
  • Qing YangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)

Abstract

Chitin-containing organisms, such as fungi and arthropods, use chitin as a structural component to protect themselves from harsh environmental conditions. Hosts such as mammals and plants, however, sense chitin to initiate innate and adaptive immunity and exclude chitin-containing organisms. A number of protein factors are then expressed, and several signaling pathways are triggered. In this chapter, we focus on the responses and signal transduction pathways that are activated in mammals and plants upon invasion by chitin-containing organisms. As host chitinases play important roles in the glycolytic processing of chitin, which is then recognized by pattern-recognition receptors, we also pay special attention to the chitinases that are involved in immune recognition.

Keywords

Human chitinase Chitin Pattern-recognition receptors Plant signal transduction pathways 

Abbreviations

Arg1

Arginase 1

CCL2

chemokine (C-C motif) ligand 2

CD11

cluster of differentiation 11

CXCL8

chemokine (C-X-C motif) ligand 8

ECD

ectodomain

EF-Tu

elongation factor thermo unstable

FIBCD1

fibrinogen C domain containing 1

Fizz1

found in inflammatory zone 1

flg22

flagelin 22

HDM

house dust mite

GlcNAc

2-acetamido-2-deoxy-D-glucopyranose

IL

interleukin

LRR

leucine-rich repeat

LTD4

leukotriene D4

MALT1

mucosa-associated lymphoid tissue lymphoma translocation protein 1

MAPK

mitogen-activated protein kinase

MPK3

mitogen-activated protein kinase 3

MyD88

myeloid differentiation factor 88

M2

alternatively activated macrophages

(NAG)n

β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n

NMR

nuclear magnetic resonance

NOD2

nucleotide-binding oligomerization domain-containing protein 2

PAMPs

pathogen-associated molecular patterns

PGD2

prostaglandin D2

PRRs

pattern-recognition receptors

RLCK

receptor-like cytoplasmic kinase

ROS

reactive oxygen species

TLR

toll-like receptor

TNF

tumor necrosis factor

TSLP

thymic stromal lymphopoietin

WRKY

transcription factor with a ~60-residue DNA-binding domain containing a highly conserved heptapeptide motif WRKYGQK

References

  1. Aerts JM, Hollak CE (1997) Plasma and metabolic abnormalities in Gaucher’s disease. Bailliere’s clinical haematology. 10(4):691–709Google Scholar
  2. Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y et al (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13(4):465–476.  https://doi.org/10.1016/j.chom.2013.03.007Google Scholar
  3. Schlosser A, Thomsen T, Moeller JB, Nielsen O, Tornøe I, Mollenhauer J, Moestrup SK, Holmskov U (2009) Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. J Immunol 183:3800–3809Google Scholar
  4. Becker KL, Aimanianda V, Wang X, Gresnigt MS, Ammerdorffer A, Jacobs CW, Gazendam RP, Joosten LAB, Netea MG, Latge JP et al (2016) Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in Human PBMCs via the Fc-gamma Receptor/Syk/PI3 K Pathway. Mbio 7(3).  https://doi.org/10.1128/mBio:01823-15
  5. Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts JM (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276(9):6770–6778.  https://doi.org/10.1074/jbc.M009886200Google Scholar
  6. Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Aerts JM (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270(44):26252–26256Google Scholar
  7. Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering K-S, Glaser W, Stockinger S, Decker T, Akira S, Mueller M et al (2011) Conventional dendritic cells mount a Type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186(5):3104–3112.  https://doi.org/10.4049/jimmunol.1002599Google Scholar
  8. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808.  https://doi.org/10.1002/bies.20441Google Scholar
  9. Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci USA 114(38):E8118–E8127.  https://doi.org/10.1073/pnas.1706795114Google Scholar
  10. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165).  https://doi.org/10.1126/scitranslmed.3004404Google Scholar
  11. Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP (2015) International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 67(2):462–504.  https://doi.org/10.1124/pr.114.009928Google Scholar
  12. Bussink AP, Vreede J, Aerts JM, Boot RG (2008) A single histidine residue modulates enzymatic activity in acidic mammalian chitinase. FEBS Lett 582(6):931–935.  https://doi.org/10.1016/j.febslet.2008.02.032Google Scholar
  13. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife. 3.  https://doi.org/10.7554/elife.03766
  14. Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N, Nakagawa T, Barker DG, Genre A (2017) The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytol 214(4):1440–1446.  https://doi.org/10.1111/nph.14539Google Scholar
  15. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic Bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130Google Scholar
  16. Chelsea L, Bueter CAS, Stuart M, Levitz (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080Google Scholar
  17. Cuesta A, Esteban MÁ, Meseguer J (2003) In vitro effect of chitin particles on the innate cellular immune system of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 15(1):1–11Google Scholar
  18. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182(6):3573–3582.  https://doi.org/10.4049/jimmunol.0802113Google Scholar
  19. Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA (2008) TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181(6):4279–4286.  https://doi.org/10.4049/jimmunol.181.6.4279Google Scholar
  20. Di Rosa M, Distefano G, Zorena K, Malaguarnera L (2016) Chitinases and immunity: ancestral molecules with new functions. Immunobiol 221(3):399–411.  https://doi.org/10.1016/j.imbio.2015.11.014Google Scholar
  21. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548.  https://doi.org/10.1038/nrg2812Google Scholar
  22. Dong B, Li D, Li R, Chen SC-A, Liu W, Liu W, Chen L, Chen Y, Zhang X, Tong Z (2014) A chitin-like component on sclerotic cells of Fonsecaea pedrosoi inhibits dectin-1-mediated murine Th17 development by masking β-glucans. PLoS ONE 9(12):e114113Google Scholar
  23. Dostert C, Tschopp J (2007) DEteCTINg fungal pathogens. Nat Immunol 8(1):17Google Scholar
  24. Elias JA (2004) Acidic mammalian chitinase in Asthmatic Th2 inflammation and IL-13 pathway activation. Science 304:1678–1682Google Scholar
  25. Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V (2017) Chitin-induced and chitin elicitor receptor kinase1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana lysin motif-containing receptor-like kinase5 (LYK5). New Phytol 215(1):382–396.  https://doi.org/10.1111/nph.14592Google Scholar
  26. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci USA 110(22):9166–9170.  https://doi.org/10.1073/pnas.1203458110Google Scholar
  27. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276.  https://doi.org/10.1046/j.1365-313X.1999.00265.xGoogle Scholar
  28. Fernandes C, Gow NAR, Goncalves T (2016) The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biol Rev 30(1):1–14.  https://doi.org/10.1016/j.fbr.2016.03.002Google Scholar
  29. Fuchs K, Cardona Gloria Y, Wolz O-O, Herster F, Sharma L, Dillen CA, Taumer C, Dickhofer S, Bittner Z, Dang T-M et al (2018) The fungal ligand chitin directly binds TLR2 and triggers inflammation dependent on oligomer size. EMBO reports 19(12).  https://doi.org/10.15252/embr.201846065
  30. Gimenez-Ibanez S, Hann DR, Ntoukakls V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19(5):423–429.  https://doi.org/10.1016/j.cub.2009.01.054Google Scholar
  31. Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M (1990) NKR-P1, a signal transduction molecule on natural killer cells. Science 249(4974):1298–1300Google Scholar
  32. Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5(3).  https://doi.org/10.1128/microbiolspec.funk-0035-2016
  33. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K et al (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA 111(3):E404–E413.  https://doi.org/10.1073/pnas.1312099111Google Scholar
  34. Hollak C, van Weely S, Van Oers M, Aerts J (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clinic Investig 93(3):1288–1292Google Scholar
  35. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103(29):11086–11091.  https://doi.org/10.1073/pnas.0508882103Google Scholar
  36. Kanda Y, Yokotani N, Maeda S, Nishizawa Y, Kamakura T, Mori M (2017) The receptor-like cytoplasmic kinase BSR1 mediates chitin-induced defense signaling in rice cells. Biosci Biotech Biochem 81(8):1497–1502Google Scholar
  37. Kim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, Eynon EE, Flavell RA (2015) AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci USA 112(22):E2891–2899.  https://doi.org/10.1073/pnas.1507393112Google Scholar
  38. Klauser D, Flury P, Boller T, Bartels S (2013) Several MAMPs, including chitin fragments, enhance at Pep-triggered oxidative burst independently of wounding. Plant Signal Behav 8(9):e25346Google Scholar
  39. Koller B, Müller-Wiefel AS, Rupec R, Korting HC, Ruzicka T (2011) Chitin modulates innate immune responses of keratinocytes. PLoS ONE 6(2):e16594Google Scholar
  40. Komi DEA, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223.  https://doi.org/10.1007/s12016-017-8600-0Google Scholar
  41. Kouzai Y, Mochizuki S, Nakajima K, Desaki Y, Hayafune M, Miyazaki H, Yokotani N, Ozawa K, Minami E, Kaku H et al (2014) Targeted Gene Disruption of OsCERK1 Reveals Its Indispensable Role in Chitin Perception and Involvement in the Peptidoglycan Response and Immunity in Rice. Mol Plant-Microbe Interact 27(9):975–982.  https://doi.org/10.1094/mpmi-03-14-0068-rGoogle Scholar
  42. Kzhyshkowska JG, Goerdt A, Sergij (2007) Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights 2:117727190700200023Google Scholar
  43. Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator botrytis-induced kinase1 in plant growth, ethylene signaling, and PAMP-triggered immunity in arabidopsis. Plant Cell 23(8):2831–2849.  https://doi.org/10.1105/tpc.111.087122Google Scholar
  44. Latge J-P (2007) The cell wall: a carbohydrate armour for the fungal cell. Molec Microbiol 66(2):279–290.  https://doi.org/10.1111/j.1365-2958.2007.05872.xGoogle Scholar
  45. Le MH, Cao Y, Zhang X-C, Stacey G (2014) LIK1, A CERK1-interacting kinase, regulates plant immune responses in arabidopsis. Plos One 9(7).  https://doi.org/10.1371/journal.pone.0102245Google Scholar
  46. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang M-J, He C-H, Takyar S, Elias JA (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Ann Rev Physiol 73:479–501Google Scholar
  47. Lee CG, Da Silva CA, Lee J-Y, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opinion Immunol 20(6):684–689Google Scholar
  48. Lee W-S, Rudd JJ, Hammond-Kosack KE, Kanyuka K (2014) Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Molec Plant-Microbe Interact 27(3):236–243.  https://doi.org/10.1094/mpmi-07-13-0201-rGoogle Scholar
  49. Liu B, Li J-F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K et al (2012a) Lysin Motif-containing Proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24(8):3406–3419.  https://doi.org/10.1105/tpc.112.102475Google Scholar
  50. Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J et al (2012b) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164.  https://doi.org/10.1126/science.1218867Google Scholar
  51. Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J (2016) Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24(7):1192–1200.  https://doi.org/10.1016/j.str.2016.04.014Google Scholar
  52. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Molec Plant-Microbe Interact 24(2):183–193.  https://doi.org/10.1094/mpmi-07-10-0149Google Scholar
  53. Lund S, Walford HH, Doherty TA (2013). Type 2 innate lymphoid cells in allergic disease. Curr Immunol Rev 9(4):214-221Google Scholar
  54. Mack I, Hector A, Ballbach M, Kohlhaufl J, Fuchs KJ, Weber A, Mall MA, Hartl D (2015) The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Molec Cell Pediatr 2(1):3–3.  https://doi.org/10.1186/s40348-015-0014-6Google Scholar
  55. Malaguarnera L (2006) Chitotriosidase: the yin and yang. Cell Mol Life Sci CMLS 63(24):3018–3029Google Scholar
  56. Malaguarnera L, Di Rosa M, Zambito AM, dell’Ombra N, Nicoletti F, Malaguarnera M (2006) Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut 55(9):1313–1320Google Scholar
  57. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826.  https://doi.org/10.1038/nature06246Google Scholar
  58. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104(49):19613–19618.  https://doi.org/10.1073/pnas.0705147104Google Scholar
  59. Nair MG, Gallagher IJ, Taylor MD, Loke Pn, Coulson PS, Wilson R, Maizels RM, Allen JE (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73(1):385–394Google Scholar
  60. Olland AM, Strand J, Presman E, Czerwinski R, Joseph-McCarthy D, Krykbaev R, Schlingmann G, Chopra R, Lin L, Fleming M et al (2009) Triad of polar residues implicated in pH specificity of acidic mammalian chitinase. Protein Sci: Publ Protein Soc 18(3):569–578.  https://doi.org/10.1002/pro.63Google Scholar
  61. Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285(37):28902–28911.  https://doi.org/10.1074/jbc.M110.116657Google Scholar
  62. Reese TA, Liang H-E, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447(7140):92Google Scholar
  63. Roy RM, Wüthrich M, Klein BS (2012) Chitin elicits CCL2 from airway epithelial cells and induces CCR62-dependent innate allergic inflammation in the lung. J Immunol 189(5):2545–2552Google Scholar
  64. Sanchez-Vallet A, Mesters JR, Thomma BPHJ (2015) The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 39(2):171–183.  https://doi.org/10.1093/femsre/fuu003Google Scholar
  65. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936Google Scholar
  66. Schlosser A, Thomsen T, Moeller JB, Nielsen O, Tornøe I, Mollenhauer J, Moestrup SK, Holmskov U (2009) Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. J Immunol 183(6):3800–3809Google Scholar
  67. Semeňuk T, Krist P, Pavlíček J, Bezouška K, Kuzma M, Novák P, Křen V (2001) Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj J 18(10):817–826Google Scholar
  68. Shen C-R, Juang H-H, Chen H-S, Yang C-J, Wu C-J, Lee M-H, Hwang Y-S, Kuo M-L, Chen Y-S, Chen J-K et al (2015) The correlation between chitin and acidic mammalian chitinase in animal models of allergic asthma. Int J Mol Sci 16(11):27371–27377.  https://doi.org/10.3390/ijms161126033Google Scholar
  69. Shibata Y, Foster LA, Bradfield JF, Myrvik QN (2000) Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse. J Immunol 164(3):1314–1321Google Scholar
  70. Shibata Y, Metzger WJ, Myrvik QN (1997) Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan - Mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol 159(5):2462–2467Google Scholar
  71. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2):204–214.  https://doi.org/10.1111/j.1365-313X.2010.04324.xGoogle Scholar
  72. Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N (2012) Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 53(10):1696–1706.  https://doi.org/10.1093/pcp/pcs113Google Scholar
  73. Shinya T, Nakagawa T, Kaku H, Shibuya N (2015) Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol 26:64–71.  https://doi.org/10.1016/j.pbi.2015.05.032Google Scholar
  74. Shinya T, Yamaguchi K, Desaki Y, Yamada K, Narisawa T, Kobayashi Y, Maeda K, Suzuki M, Tanimoto T, Takeda J et al (2014) Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J 79(1):56–66.  https://doi.org/10.1111/tpj.12535Google Scholar
  75. Shuhui L, Mok Y-K, Wong WSF (2009) Role of mammalian chitinases in asthma. Int Arch Allergy Immunol 149(4):369–377.  https://doi.org/10.1159/000205583Google Scholar
  76. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100.  https://doi.org/10.1038/nri3141Google Scholar
  77. Tada R, Latge J-P, Aimanianda V (2013) Undressing the fungal cell wall/cell membrane - the antifungal drug targets. Curr Pharm Design 19(20):3738–3747.  https://doi.org/10.2174/1381612811319200012Google Scholar
  78. Thomsen T, Schlosser A, Holmskov U, Sorensen GL (2011) Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 48(4):369–381Google Scholar
  79. Tomas Semenuk PK, Pavlıcek Jirı, Bezouska Karel, Kuzma Marek, Novak Petr, Kren Vladimır (2001) Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj J 18:817–826Google Scholar
  80. Tschopp CDJ (2007) DEteCTINg fungal pathogens. J Biol Chem 8:17–18.  https://doi.org/10.1074/jbcGoogle Scholar
  81. van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123(4):1507–1515.  https://doi.org/10.1104/pp.123.4.1507Google Scholar
  82. Van Dyken SJ, Mohapatra A, Nussbaum JC, Molofsky AB, Thornton EE, Ziegler SF, McKenzie AN, Krummel MF, Liang H-E, Locksley RM (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity 40(3):414–424Google Scholar
  83. Vannella KM, Ramalingam TR, Hart KM, de Queiroz Prado R, Sciurba J, Barron L, Borthwick LA, Smith AD, Mentink-Kane M, White S et al (2016) Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol 17(5):538–544.  https://doi.org/10.1038/ni.3417Google Scholar
  84. Wagener J, Malireddi RS, Lenardon MD, Köberle M, Vautier S, MacCallum DM, Biedermann T, Schaller M, Netea MG, Kanneganti T-D (2014) Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog 10(4):e1004050Google Scholar
  85. Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Kim S-Y, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20(2):471–481.  https://doi.org/10.1105/tpc.107.056754Google Scholar
  86. Wan JR, Zhang SQ, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5(2):125–135.  https://doi.org/10.1111/j.1364-3703.2004.00215.xGoogle Scholar
  87. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, Lee CG, Elias JA, Nielsen JN, Boulware DR (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11(3):e1004701Google Scholar
  88. Yamaguchi K, Imai K, Akamatsu A, Mihashi M, Hayashi N, Shimamoto K, Kawasaki T (2012) SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice. Plant J 70(3):389–397.  https://doi.org/10.1111/j.1365-313X.2011.04874.xGoogle Scholar
  89. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S et al (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357.  https://doi.org/10.1016/j.chom.2013.02.007Google Scholar
  90. Yeh Y-H, Panzeri D, Kadota Y, Huang Y-C, Huang P-Y, Tao C-N, Roux M, Chien H-C, Chin T-C, Chu P-W et al (2016) The Arabidopsis Malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity. Plant Cell 28(7):1701–1721.  https://doi.org/10.1105/tpc.16.00313Google Scholar
  91. Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a pseudomonas syringae effector. Cell Host Microbe 7(4):290–301.  https://doi.org/10.1016/j.chom.2010.03.007Google Scholar
  92. Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543(7645):328–336.  https://doi.org/10.1038/nature22009Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xi Jiang
    • 1
  • Han Bao
    • 1
  • Hans Merzendorfer
    • 2
  • Qing Yang
    • 1
    • 3
    Email author
  1. 1.School of BioengineeringDalian University of TechnologyDalianChina
  2. 2.Department of Chemistry and Biology – Molecular BiologyUniversity of SiegenSiegenGermany
  3. 3.State Laboratory of Biology for Plant Diseases and Insect PestsInstitute of Plant Protection at Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations