Advertisement

Chitin Prevalence and Function in Bacteria, Fungi and Protists

  • Lea Steinfeld
  • Ali Vafaei
  • Janin Rösner
  • Hans MerzendorferEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)

Abstract

Chitin is an important structural polysaccharide, which supports and organizes extracellular matrices in a variety of taxonomic groups including bacteria, fungi, protists, and animals. Additionally, chitin has been recognized as a molecule that is required for Rhizobia-legume symbiosis and involved in arbuscular mycorrhizal signaling in the symbiotic interaction between terrestrial plants and fungi. Moreover, it serves as a unique molecular pattern in the plant defense system against pathogenic fungi and parasites, and in the innate and adaptive immune response of mammals and humans. In this review, we will focus on the prevalence and structural function of chitin in bacteria, fungi, and protists, with a particular focus on the evolution of chitin synthases and the function of chitin oligosaccharides as a signaling molecule in symbiosis and immunity.

Keywords

Rhizobia Fungi Cell wall Protists Skeleton 

References

  1. Agatha S, Simon P (2012) On the nature of tintinnid loricae (Ciliophora: Spirotricha: Tintinnina): a histochemical, enzymatic, EDX, and high-resolution TEM study. Acta Protozool 51:1–19PubMedPubMedCentralGoogle Scholar
  2. Anno K, Otsuka K, Seno N (1974) A chitin sulfate-like polysaccharide from the test of the tunicate Halocynthia roretzi. Biochim Biophys Acta 362:215–219CrossRefPubMedGoogle Scholar
  3. Arcones I, Sacristan C, Roncero C (2016) Maintaining protein homeostasis: early and late endosomal dual recycling for the maintenance of intracellular pools of the plasma membrane protein Chs3. Mol Biol Cell 27:4021–4032CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arroyo-Begovich A, Cárabez-Trejo A (1982) Location of chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers. J Parasitol 68:253–258CrossRefPubMedGoogle Scholar
  5. Arroyo-Begovich A, Carabez-Trejo A, Ruiz-Herrera J (1980) Identification of the structural component in the cyst wall of Entamoeba invadens. J Parasitol 66:735–741CrossRefPubMedGoogle Scholar
  6. Arroyo J, Farkas V, Sanz AB, Cabib E (2016) Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18:1239–1250CrossRefPubMedGoogle Scholar
  7. Atkinson EM, Long SR (1992) Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Mol Plant Microbe Interact 5:439–442CrossRefPubMedGoogle Scholar
  8. Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91:8418–8422CrossRefPubMedGoogle Scholar
  9. Aufauvre-Brown A, Mellado E, Gow NA, Holden DW (1997) Aspergillus fumigatus chsE: A gene related to chs3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21:141–152CrossRefPubMedGoogle Scholar
  10. Aumeier C, Menzel D (2012) Secretion in the diatoms. In: Vivanco JM, Baluska F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 221–250CrossRefGoogle Scholar
  11. Avron B, Deutsch RM, Mirelman D (1982) Chitin synthesis inhibitors prevent cyst formation by Entamoeba trophozoites. Biochem Biophysical Res Commun 108:815–821CrossRefGoogle Scholar
  12. Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet 228(1–2):113–124PubMedGoogle Scholar
  13. Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A (1992) Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of Nod signal production and bacteroid maturation. J Bacteriol 174:7555–7565CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bartnicki-Garcia S (2006) Chitosomes: past, present and future. FEMS Yeast Res 6:957–965CrossRefPubMedGoogle Scholar
  15. Biancalana F, Kopprio GA, Lara RJ, Alonso C (2017) A protocol for the simultaneous identification of chitin-containing particles and their associated bacteria. Syst Appl Microbiol 40:314–320CrossRefPubMedGoogle Scholar
  16. Blackwell J, Parker K, Rudall K (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385CrossRefPubMedGoogle Scholar
  17. Bloemberg GV, Kamst E, Harteveld M, van der Drift KM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Mol Microbiol 16:1123–1136CrossRefPubMedGoogle Scholar
  18. Bloemberg GV, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1994) Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol 11:793–804CrossRefPubMedGoogle Scholar
  19. Bo M, Bavestrello G, Kurek D, Paasch S, Brunner E, Born R, Galli R, Stelling AL, Sivkov VN, Petrova OV, Vyalikh D, Kummer K, Molodtsov SL, Nowak D, Nowak J, Ehrlich H (2012) Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria). Int J Biol Macromol 51(1–2):129–137CrossRefPubMedGoogle Scholar
  20. Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71:8042–8048CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Nati Acad Sci USA 89:519–523CrossRefGoogle Scholar
  22. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808CrossRefPubMedGoogle Scholar
  23. Briza P, Ellinger A, Winkler G, Breitenbach M (1988) Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem 263:11569–11574PubMedGoogle Scholar
  24. Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652CrossRefPubMedPubMedCentralGoogle Scholar
  25. Brunke S, Mogavero S, Kasper L, Hube B (2016) Virulence factors in fungal pathogens of man. Curr Opin Microbiol 32:89–95CrossRefPubMedGoogle Scholar
  26. Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 48:9724–9727CrossRefPubMedGoogle Scholar
  27. Buck KR (1990) Choanomastigotes (choanoflagellates). In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of the Protoctista: the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 194–199Google Scholar
  28. Bussers JC, Jeuniaux C (1974) Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés. Protistologica 10:43–46Google Scholar
  29. Bussers JC, Voss-Foucart MF, Bouchez-Decloux N (1977) Ultrastructure and chemical composition of the lorica of Folliculitis products (Ciliata Heterotricha). Abstr Int Congr Protozool. 50:358Google Scholar
  30. Bussers JC (1976) Structure et composition du kyste de résistance de 4 protozoaires ciliés. Protistologica 12:87–100Google Scholar
  31. Calvo P, Fernandez-Aliseda MC, Garrido J, Torres A (2003) Ultrastructure, encystment and cyst wall composition of the resting cyst of the peritrich ciliate Opisthonecta henneguyi. J Eukaryot Microbiol 50:49–56CrossRefPubMedGoogle Scholar
  32. Campos-Gongora E, Ebert F, Willhoeft U, Said-Fernandez S, Tannich E (2004) Characterization of chitin synthases from Entamoeba. Protist 155:323–330CrossRefPubMedGoogle Scholar
  33. Carlson RW, Price NP, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact 7:684–695CrossRefPubMedGoogle Scholar
  34. Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Cedillo-Rivera R, Bonilla P, Martínez-Palomo A (2007) Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol Res 100:1169–1175CrossRefPubMedGoogle Scholar
  35. Chen SF, Juang YL, Chou WK, Lai JM, Huang CY, Kao CY, Wang FS (2009) Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis. BMC Syst Biol 3:110CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM (2012) Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 23:45–58CrossRefPubMedPubMedCentralGoogle Scholar
  37. Choi WJ, Santos B, Duran A, Cabib E (1994) Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol Cell Biol 14:7685–7694CrossRefPubMedPubMedCentralGoogle Scholar
  38. Choquer M, Boccara M, Goncalves IR, Soulie MC, Vidal-Cros A (2004) Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271:2153–2164CrossRefPubMedGoogle Scholar
  39. Christodoulidou A, Briza P, Ellinger A, Bouriotis V (1999) Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett 460:275–279CrossRefPubMedGoogle Scholar
  40. Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135:597–610Google Scholar
  41. Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386PubMedPubMedCentralGoogle Scholar
  42. Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256:419–426CrossRefPubMedGoogle Scholar
  44. Davis AK, Hildebrand M, Palenik B (2005) A stress-induced protein associated with the girdle band region of the diatom Thalassiosira pseudonana (Bacillariophyta). J Phycol 41:577–589CrossRefGoogle Scholar
  45. De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  46. de Jonge R, Thomma BP (2009) Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17:151–157CrossRefPubMedGoogle Scholar
  47. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320CrossRefPubMedGoogle Scholar
  48. Debelle F, Rosenberg C, Denarie J (1992) The Rhizobium, Bradyrhizobium, and Azorhizobium NodC proteins are homologous to yeast chitin synthases. Mol Plant Microbe Interact 5:443–446CrossRefPubMedGoogle Scholar
  49. Demont N, Debelle F, Aurelle H, Denarie J, Prome JC (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268:20134–20142PubMedGoogle Scholar
  50. Deringer VL, Englert U, Dronskowski R (2016) Nature, strength, and cooperativity of the hydrogen-bonding network in alpha-chitin. Biomacromol 17:996–1003CrossRefGoogle Scholar
  51. Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant Microbe Interact 7:564–572CrossRefPubMedGoogle Scholar
  52. Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028CrossRefPubMedPubMedCentralGoogle Scholar
  53. Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evo 308:347–356CrossRefGoogle Scholar
  55. El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112CrossRefGoogle Scholar
  56. Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and Its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54:213–223CrossRefPubMedGoogle Scholar
  57. Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ (2015) Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6:e00986CrossRefPubMedPubMedCentralGoogle Scholar
  58. Feldmann H, Aigle M, Aljinovic G, Andre B, Baclet M, Barthe C, Baur A, Becam A, Biteau N, Boles E (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13:5795–5809CrossRefPubMedPubMedCentralGoogle Scholar
  59. Feng J, Li Q, Hu HL, Chen XC, Hong GF (2003) Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res 31:3143–3156CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fernandes C, Gow NAR, Gonçalves T (2016) The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biol Rev 30:1–14CrossRefGoogle Scholar
  61. Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360CrossRefPubMedGoogle Scholar
  62. Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2:282–293CrossRefPubMedGoogle Scholar
  63. Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82CrossRefPubMedGoogle Scholar
  64. Frisardi M, Ghosh SK, Field J, Van Dellen K, Rogers R, Robbins P, Samuelson J (2000) The most abundant glycoprotein of amebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains. Infect Immun 68:4217–4224Google Scholar
  65. Geelen D, Leyman B, Mergaert P, Klarskov K, Van Montagu M, Geremia R, Holsters M (1995) NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end. Mol Microbiol 17:387–397CrossRefPubMedGoogle Scholar
  66. Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91:2669–2673CrossRefPubMedGoogle Scholar
  67. Gharieb MM, El-Sabbagh SM, Shalaby MA, Darwesh OM (2015) Production of chitosan from different species of zygomycetes and its antimicrobial activity. Int J Sci Eng Res 6:123–130Google Scholar
  68. Giraud-Guille M-M, Chanzy H, Vuong R (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol 103:232–240CrossRefGoogle Scholar
  69. Goffeau A, Barrell BG, Bussey H, Davis R, Dujon B, Feldmann H, Galibert F, Hoheisel J, Jacq C, Johnston M (1996) Life with 6000 genes. Science 274:546–567CrossRefPubMedGoogle Scholar
  70. Gohlke S, Heine D, Schmitz HP, Merzendorfer H (2018) Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker’s yeast chitin synthase III complex. Fungal Genet Biol 117:11–20CrossRefPubMedGoogle Scholar
  71. Gohlke S, Muthukrishnan S, Merzendorfer H (2017) In vitro and in vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 18 pii:E702CrossRefGoogle Scholar
  72. Goldberg WM (1978) Chemical changes accompanying maturation of the connective tissue skeletons of gorgonian and antipatharian corals. Marine Biol 49:203–210CrossRefGoogle Scholar
  73. Gonçalves IR, Brouillet S, Soulié MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M (2016) Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 16:252CrossRefPubMedPubMedCentralGoogle Scholar
  74. Gottfert M, Hitz S, Hennecke H (1990) Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Mol Plant Microbe Interact 3:308–316CrossRefPubMedGoogle Scholar
  75. Gow NA, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5.  https://doi.org/10.1128/microbiolspec.funk-0035-2016
  76. Gowri N, Sundara-Rajulu G, Aruchami M (1982) Presence of gamma-chitin in the peritrophic membrane of tunicates. In: Hirano S, Tokura S (eds) Second international conference on chitin and chitosan, Tottoni, Japan, 1982. J Eukaryot Microbiol, pp 77–81Google Scholar
  77. Greco N, Bussers JC, Van Daele Y, Goffinet G (1990) Ultrastructural localization of chitin in the cystic wall of Euplotes muscicola Kahl (Ciliata, Hypotrichia). Eur J Protistol 26:75–80CrossRefPubMedGoogle Scholar
  78. Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Ann Rev Entomol 54:285–302CrossRefGoogle Scholar
  79. Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184PubMedGoogle Scholar
  80. Herth W (1978) A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella. Naturwissenschaften 65:260–261CrossRefGoogle Scholar
  81. Herth W (1980) Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87:442–450CrossRefPubMedGoogle Scholar
  82. Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 73:311–321CrossRefPubMedGoogle Scholar
  83. Herth W, Zugenmaier P (1977) Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastruct Res 61:230–239CrossRefPubMedGoogle Scholar
  84. Horiuchi H (2009) Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol 47(Suppl 1):S47–S52CrossRefPubMedGoogle Scholar
  85. Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relic B, Prome JC, Broughton WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. J Biol Chem 270:22968–22973CrossRefPubMedGoogle Scholar
  86. John M, Röhrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Procd Natl Acad Sci USA 90:625–629CrossRefGoogle Scholar
  87. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee B, Newport G, Thorstenson YR, Agabian N, Magee P (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334CrossRefGoogle Scholar
  88. Kameda T, Miyazawa M, Ono H, Yoshida M (2005) Hydrogen bonding structure and stability of alpha-chitin studied by 13C solid-state NMR. Macromol Biosci 5:103–106CrossRefPubMedGoogle Scholar
  89. Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJ, Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 179:2103–2108CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kamst E, van der Drift KM, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol 177:6282–6285CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kapaun E, Reisser W (1995) A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta 197:577–582CrossRefGoogle Scholar
  92. Kawasaki T, Tanaka M, Fujie M, Usami S, Sakai K, Yamada T (2002) Chitin synthesis in chlorovirus CVK2-infected chlorella cells. Virology 302:123–131CrossRefPubMedGoogle Scholar
  93. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365(1541):729–748CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kelly S, Radutoiu S, Stougaard J (2017) Legume LysM receptors mediate symbiotic and pathogenic signalling. Curr Opin Plant Biol 39:152–158CrossRefPubMedGoogle Scholar
  95. Kneipp LF, Andrade AF, de Souza W, Angluster J, Alviano CS, Travassos LR (1998) Trichomonas vaginalis and Tritrichomonas foetus: Expression of chitin at the cell surface. Exp Parasitol 89:195–204CrossRefPubMedGoogle Scholar
  96. Lam KK, Davey M, Sun B, Roth AF, Davis NG, Conibear E (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174:19–25 Google Scholar
  97. Landers SC (1991) Secretion of the reproductive cyst wall by the apostome ciliate Hyalophysa chattoni. Eur J Parasitol 27:160–167Google Scholar
  98. Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290CrossRefPubMedGoogle Scholar
  99. Lewin A, Cervantes E, Chee-Hoong W, Broughton WJ (1990) nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. 3:317–326Google Scholar
  100. Li M, Jiang C, Wang Q, Zhao Z, Jin Q, Xu JR, Liu H (2016) Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life. Front Plant Sci 7:37PubMedPubMedCentralGoogle Scholar
  101. Lindsay GJ, Gooday GW (1985) Action of chitinase on spines of the diatom Thalassiosira fluviatilis. Carbohydr Polym 5:131–140CrossRefGoogle Scholar
  102. Liu R, Xu C, Zhang Q, Wang S, Fang W (2017) Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches. Sci Rep 7:44527CrossRefPubMedPubMedCentralGoogle Scholar
  103. Loiseau PM, Bories C, Sanon A (2002) The chitinase system from Trichomonas vaginalis as a potential target for antimicrobial therapy of urogenital trichomoniasis. Biomed Pharmacother 56:503–510CrossRefPubMedGoogle Scholar
  104. Lopez-Lara IM, Geiger O (2001) The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase. Mol Plant Microbe Interact 14:349–357CrossRefPubMedGoogle Scholar
  105. Lynn D (2008) The ciliated protozoa: Characterization, classification and guide to the literature, 3rd edn. Springer, Dordrecht, p 605Google Scholar
  106. Mandel MA, Galgiani JN, Kroken S, Orbach MJ (2006) Coccidioides posadasii contains single chitin synthase genes corresponding to classes I to VII. Fungal Genet Biol 43:775–788CrossRefPubMedGoogle Scholar
  107. Manning P, Erlandsen SL, Jarroll EL (1992) Carbohydrate and amino acid analyses of Giardia muris cysts. J Protozool 39:290–296CrossRefPubMedGoogle Scholar
  108. McLachlan J, McInnes A, Falk M (1965) Studies on the chitan (chitin: poly-N-acetylglucosamine) fibers of the diatom Thalassiosira fluviatilis Hustedt: I. Production and isolation of chitan fibers. Can J Bot 43:707–713CrossRefGoogle Scholar
  109. Mendoza L, Taylor JW, Ajello L (2002) The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Ann Rev Microbiol 56:315–344CrossRefGoogle Scholar
  110. Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759–769CrossRefPubMedGoogle Scholar
  111. Meyer MF, Kreil G (1996) Cells expressing the DG42 gene from early Xenopus embryos synthesize hyaluronan. Proc Natl Acad Sci USA 93:4543–4547CrossRefPubMedGoogle Scholar
  112. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618CrossRefPubMedGoogle Scholar
  113. Mohammed Ali AM, Kawasaki T, Yamada T (2005) Genetic rearrangements on the Chlorovirus genome that switch between hyaluronan synthesis and chitin synthesis. Virology 342:102–110CrossRefPubMedGoogle Scholar
  114. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186CrossRefPubMedGoogle Scholar
  115. Morin LG, Smucker RA, Herth W (1986) Effects of two chitin synthesis inhibitors on Thalassiosira fluviatilis and Cyclotella cryptica. FEMS Microbiol Lett 37:263–268CrossRefGoogle Scholar
  116. Mulisch M, Harry O, Patterson D, Wyatt C (1986) Folliculinids (Ciliata: Heterotrichida) from Portaferry, Co., Down, including a new species of Metafolliculina Dons, 1924. Ir Nat J 22:1–7Google Scholar
  117. Mulisch M, Hausmann K (1983) Lorica Construction in Eufolliculina sp. (Ciliophora, Heterotrichida). J Protozool 30:97–104CrossRefGoogle Scholar
  118. Mulisch M, Hausmann K (1989) Localization of chitin on ultrathin sections of cysts of two ciliated protozoa, Blepharisma undulans and Pseudomicrothorax dubius, using colloidal gold conjugated wheat germ agglutinin. Protoplasma 152:77–86CrossRefGoogle Scholar
  119. Mulisch M, Herth W, Zugenmaier P, Hausmann K (1983) Chitin fibrils in the lorica of the ciliate Eufolliculina uhligi: ultrastructure, extracellular assembly and experimental inhibition. Biol Cell 49:169–177Google Scholar
  120. Munro CA, Gow NAR (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39:41–53CrossRefPubMedGoogle Scholar
  121. Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin Metabolism in Insects. In: Gilbert LI (ed) Insect Biochemistry and Molecular Biology. Elsevier, San Diego, pp 193–253CrossRefGoogle Scholar
  122. Muzzarelli RAA (1977) Chitin. Pergamon Press, OxfordGoogle Scholar
  123. Muzzey D, Schwartz K, Weissman JS, Sherlock G (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:1CrossRefGoogle Scholar
  124. Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967CrossRefPubMedGoogle Scholar
  125. Nakamura CV, Esteves MJ, Andrade AF, Alviano CS, de Souza W, Angluster J (1993) Chitin: a cell-surface component of Phytomonas francai. Parasitol Res 79:523–526CrossRefPubMedGoogle Scholar
  126. Nguyen TV, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K (2016) An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genom 17:796CrossRefGoogle Scholar
  127. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151CrossRefPubMedGoogle Scholar
  128. Nino-Vega G, Carrero L, San-Blas G (2004) Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 42:51–57CrossRefPubMedGoogle Scholar
  129. Odenbach D, Thines E, Anke H, Foster AJ (2009) The Magnaporthe grisea class VII chitin synthase is required for normal appressorial development and function. Mol Plant Pathol 10:81–94CrossRefPubMedGoogle Scholar
  130. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ortega-Barria E, Ward HD, Evans JE, Pereira ME (1990) N-Acetyl-glucosamine is present in cysts and trophozoites of Giardia lamblia and serves as receptor for wheatgerm agglutinin. Mol Biochem Parasitol 43:151–165CrossRefPubMedGoogle Scholar
  132. Pacheco-Arjona JR, Ramirez-Prado JH (2014) Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes. PLoS ONE 9:e104920CrossRefPubMedPubMedCentralGoogle Scholar
  133. Patterson D (1989a) Stramenopiles: chromophytes from a protistan perspective. Chromophyte Algae Probl Perspect 357–379Google Scholar
  134. Patterson D (1989b) Stramenopiles: chromophytes from a protistological perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 357–379Google Scholar
  135. Pearlmutter NL, Lembi CA (1978) Localization of chitin in algal and fungal cell walls by light and electron microscopy. J Histochem Cytochem 26:782–791CrossRefPubMedGoogle Scholar
  136. Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427CrossRefPubMedPubMedCentralGoogle Scholar
  137. Peter MG (2005) Chitin and chitosan in fungi. Biopolymers 6:123–157Google Scholar
  138. Peters W (1966) Chitin in tunicata. EXS 22:820–821Google Scholar
  139. Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin. Histochem 84:155–160CrossRefGoogle Scholar
  140. Philippsen P, Kleine K, Pöhlmann R, Düsterhöft A, Hamberg K, Hegemann JH, Obermaier B, Urrestarazu L, Aert R, Albermann K (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387:93–98PubMedGoogle Scholar
  141. Picken LE, Lotmar W (1950) Oriented protein in chitinous structures. Nature 165:599–600CrossRefPubMedGoogle Scholar
  142. Pineda E, Perdomo D (2017) Entamoeba histolytica under oxidative stress: What countermeasure mechanisms are in place? Cells 6:44CrossRefPubMedCentralGoogle Scholar
  143. Poinsot V, Crook MB, Erdn S, Maillet F, Bascaules A, Ane JM (2016) New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 434:83–93CrossRefPubMedPubMedCentralGoogle Scholar
  144. Pringle JR (1991) Staining of bud scars and other cell wall chitin with Calcofluor. Methods Enzymol 194:732–735CrossRefPubMedGoogle Scholar
  145. Quesada-Vincens D, Fellay R, Nasim T, Viprey V, Burger U, Prome JC, Broughton WJ, Jabbouri S (1997) Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 179:5087–5093CrossRefPubMedPubMedCentralGoogle Scholar
  146. Quinto C, Wijfjes AH, Bloemberg GV, Blok-Tip L, Lopez-Lara IM, Lugtenberg BJ, Thomas-Oates JE, Spaink HP (1997) Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc Natl Acad Sci USA 94:4336–4341CrossRefPubMedGoogle Scholar
  147. Rahman MA, Halfar J (2014) First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Sci Rep 4:6162CrossRefPubMedPubMedCentralGoogle Scholar
  148. Repak AJ, Anderson OR (1990) The fine structure of the encysting salt marsh heterotrich ciliate Fabrea salina. J Morphol 205:335–341CrossRefPubMedGoogle Scholar
  149. Rieder N (1973) Elektronenoptische und histochemische Untersuchungen an der Cystenhülle von Didinium nasutum OF Müller (Ciliata, Holotricha). Arch Protistenk 115:125–131Google Scholar
  150. Rivilla R, Sutton JM, Downie JA (1995) Rhizobium leguminosarum NodT is related to a family of outer-membrane transport proteins that includes TolC, PrtF, CyaE and AprF. Gene 161:27–31CrossRefPubMedGoogle Scholar
  151. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143CrossRefPubMedGoogle Scholar
  152. Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KW, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW (2009) Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. Mol Plant Microbe Interact 22:1546–1554CrossRefPubMedGoogle Scholar
  153. Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378CrossRefPubMedGoogle Scholar
  154. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633CrossRefGoogle Scholar
  155. Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256CrossRefPubMedGoogle Scholar
  156. Ruiz-Herrera J, Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243CrossRefPubMedGoogle Scholar
  157. Sachs IB (1956) The chemical nature of the cyst membrane of Pelomyxa illinoisensis. Trans Am Microsc Soc 75:307–313CrossRefGoogle Scholar
  158. Sacristan C, Reyes A, Roncero C (2012) Neck compartmentalization as the molecular basis for the different endocytic behaviour of Chs3 during budding or hyperpolarized growth in yeast cells. Mol Microbiol 83:1124–1135CrossRefPubMedGoogle Scholar
  159. Saffo MB, Fultz S (1986) Chitin in the symbiotic protist Nephromyces. Can J Bot 64:1306–1310CrossRefGoogle Scholar
  160. Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554CrossRefPubMedGoogle Scholar
  161. Samuelson J, Bushkin GG, Chatterjee A, Robbins PW (2013) Strategies to discover the structural components of cyst and oocyst walls. Eukaryot Cell 12:1578–1587CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sanchatjate S, Schekman R (2006) Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol Biol Cell 17:4157–4166CrossRefPubMedPubMedCentralGoogle Scholar
  163. Sannasi A, Hermann HR (1970) Chitin in the cephalochordata, Branchisotoma floridae. EXS 26:351–352Google Scholar
  164. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11CrossRefPubMedGoogle Scholar
  165. Schermuly G, Markmann-Mulish U, Mulisch M (1996) In vitro studies of the pathway of chitin synthesis in the ciliated protozoon Eufolliculina uhligi. In: Domard A, Jeuniaux C, Muzzarelli RAA, Roberts G (eds) Advances in chitin science. Jaques Anrés, Lyon, pp 10–17Google Scholar
  166. Scheu AK, Economou A, Hong GF, Ghelani S, Johnston AW, Downie JA (1992) Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems. Mol Microbiol 6:231–238CrossRefPubMedGoogle Scholar
  167. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front Microbiol 6:496CrossRefPubMedPubMedCentralGoogle Scholar
  168. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G (2012) Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227Google Scholar
  169. Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153CrossRefPubMedPubMedCentralGoogle Scholar
  170. Seider K, Heyken A, Lüttich A, Miramón P, Hube B (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Mircobiol 13:392–400CrossRefGoogle Scholar
  171. Semino CE, Allende ML (2000) Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int J Dev Biol 44:183–193PubMedGoogle Scholar
  172. Semino CE, Robbins PW (1995) Synthesis of “Nod”-like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc Natl Acad Sci U S A 92:3498–3501CrossRefPubMedPubMedCentralGoogle Scholar
  173. Semino CE, Specht CA, Raimondi A, Robbins PW (1996) Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc Natl Acad Sci USA 93:4548–4553CrossRefPubMedGoogle Scholar
  174. Pv Sengbusch, Müller U (1983) Distribution of glycoconjugates at algal cell surfaces as monitored by FITC-conjugated lectins. Studies on selected species from Cyanophyta, Pyrrhophyta, Raphidophyta, Euglenophyta, Chromophyta, and Chlorophyta. Protoplasma 114:103–113Google Scholar
  175. Shillito B, Lechaire JP, Childress J, Gaill F (1997) Diffraction contrast imaging of extracellular matrix components using zero-loss filtering. J Struct Biol 120:85–92CrossRefPubMedGoogle Scholar
  176. Shinya T, Nakagawa T, Kaku H, Shibuya N (2015) Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol 26:64–71Google Scholar
  177. Shiro S, Kuranaga C, Yamamoto A, Sameshima-Saito R, Saeki Y (2016) Temperature-dependent expression of nodc and community structure of soybean-nodulating Bradyrhizobia. Microbes Environ 31:27–32CrossRefPubMedPubMedCentralGoogle Scholar
  178. Small EB, Lynn DH (1981) A new macrosystem for the phylum Ciliophora doflein, 1901. Biosystems 14:387–401CrossRefPubMedGoogle Scholar
  179. Spaink HP, Carlson RW (1996) Regulation of plant morphogenesis by Lipo-Chitin oligosaccharides. Crit Rev Plant Sci 15:559–582Google Scholar
  180. Spaink HP, Wijfjes AH, Lugtenberg BJ (1995) Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 177:6276–6281CrossRefPubMedPubMedCentralGoogle Scholar
  181. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633CrossRefPubMedPubMedCentralGoogle Scholar
  182. Stegemann H (1963) Protein (conchagen) and chitin in the supporting tissue of the cuttlefish. Hoppe Seylers Z Physiol Chem 331:269–279CrossRefPubMedGoogle Scholar
  183. Stern R (2017) Go fly a chitin: the mystery of chitin and chitinases in vertebrate tissues. Front Biosci (Landmark Ed) 22:580–595CrossRefGoogle Scholar
  184. Sudoh M, Nagahashi S, Doi M, Ohta A, Takagi M, Arisawa M (1993) Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet 241 (3–4):351-358Google Scholar
  185. Sutton JM, Lea EJ, Downie JA (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91:9990–9994CrossRefPubMedGoogle Scholar
  186. Tada R, Latge JP, Aimanianda V (2013) Undressing the fungal cell wall/cell membrane-the antifungal drug targets. Curr Pharm Des 19:3738–3747CrossRefPubMedGoogle Scholar
  187. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefPubMedPubMedCentralGoogle Scholar
  188. Tang WJ, Fernandez J, Sohn JJ, Amemiya CT (2015) Chitin is endogenously produced in vertebrates. Curr Biol 25:897–900CrossRefPubMedPubMedCentralGoogle Scholar
  189. Teh EM, Chai CC, Yeong FM (2009) Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell Cycle 8:2964–2974CrossRefPubMedGoogle Scholar
  190. Tesson B, Masse S, Laurent G, Maquet J, Livage J, Martin-Jézéquel V, Coradin T (2008) Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall. Anal Bioanal Chem 390:1889–1898CrossRefPubMedGoogle Scholar
  191. Tilic E, Bartolomaeus T (2016) Structure, function and cell dynamics during chaetogenesis of abdominal uncini in Sabellaria alveolata (Sabellariidae, Annelida). Zoological Lett 2:1CrossRefPubMedPubMedCentralGoogle Scholar
  192. Trilla JA, Duran A, Roncero C (1999) Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145:1153–1163Google Scholar
  193. Tsuizaki M, Takeshita N, Ohta A, Horiuchi H (2009) Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its functions in Aspergillus nidulans. Biosci Biotechnol Biochem 73:1163–1167 Google Scholar
  194. van Dellen KL, Chatterjee A, Ratner DM, Magnelli PE, Cipollo JF, Steffen M, Robbins PW, Samuelson J (2006) Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls. Eukaryot Cell 5:836–848Google Scholar
  195. van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee B (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8:R52CrossRefGoogle Scholar
  196. Varki A (1996) Does DG42 synthesize hyaluronan or chitin?: A controversy about oligosaccharides in vertebrate development. Proc Natl Acad Sci USA 93:4523–4525CrossRefPubMedGoogle Scholar
  197. Vazquez M, Santana O, Quinto C (1993) The NodL and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from gram-negative bacteria. Mol Microbiol 8:369–377CrossRefPubMedGoogle Scholar
  198. Wagner GP (1994) Evolution and multi-functionality of the chitin system. EXS 69:559–577PubMedGoogle Scholar
  199. Wagner GP, Lo J, Laine R, Almeder M (1993) Chitin in the epidermal cuticle of a vertebrate (Paralipophrys trigloides, Blenniidae, Teleostei). EXS 49:317–319Google Scholar
  200. Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14:334–342CrossRefPubMedGoogle Scholar
  201. Ward HD, Alroy J, Lev BI, Keusch GT, Pereira ME (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634PubMedPubMedCentralGoogle Scholar
  202. Weiss IM, Schonitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153:264–277CrossRefPubMedGoogle Scholar
  203. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871CrossRefPubMedGoogle Scholar
  204. Yabe T, Yamada-Okabe T, Nakajima T, Sudoh M, Arisawa M, Yamada-Okabe H (1998) Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae. Identification of additional amino acid residues involved in its catalytic activity. Eur J Biochem 258:941–947CrossRefPubMedGoogle Scholar
  205. Yamada T, Onimatsu H, Van Etten JL (2006) Chlorella viruses. Adv Virus Res 66:293–336CrossRefPubMedPubMedCentralGoogle Scholar
  206. Yan H, Xie JB, Ji ZJ, Yuan N, Tian CF, Ji SK, Wu ZY, Zhong L, Chen WX, Du ZL, Wang ET, Chen WF (2017) Evolutionarily conserved nodE, nodO, T1SS, and hydrogenase system in Rhizobia of Astragalus membranaceus and Caragana intermedia. Front Microbiol 8:2282CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 6:316–325CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GE, Wang E (2015) The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–267CrossRefPubMedGoogle Scholar
  209. Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285:330–339CrossRefPubMedGoogle Scholar
  210. Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196CrossRefPubMedGoogle Scholar
  211. Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7:1909–1919CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lea Steinfeld
    • 1
  • Ali Vafaei
    • 1
  • Janin Rösner
    • 1
  • Hans Merzendorfer
    • 1
    Email author
  1. 1.Department of Chemistry and Biology – Molecular BiologyUniversity of SiegenSiegenGermany

Personalised recommendations