Chitin: Structure, Chemistry and Biology

  • Bernard MoussianEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)


Chitin is a linear polysaccharide of the amino sugar N-acetyl glucosamine. It is present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes and arthropods and fungi. Generally, it is an important component of protective or supportive extracellular matrices that cover the tissue that produces it or the whole body of the organism. Chitin fibres associate with each other adopting one of three possible crystalline organisations, i.e. α-, β- or γ-chitin. Usually, chitin fibre bundles interact with chitin-binding proteins forming higher order structures. Chitin laminae, which are two-dimensional sheets of α-chitin crystals with antiparallel running chitin fibres in association with β-folded proteins, are primary constituents of the arthropod cuticle and the fibrous extracellular matrix in sponges. A tri-dimensional composite material of proteins coacervates and β-chitin constitute hard biomaterials such as the squid beak. The molecular composition of γ-chitin-based structures that contribute to the physical barrier found in insect cocoons is less well studied. In principle, chitin is a versatile extracellular polysaccharide that in association with proteins defines the mechanical properties of tissues and organisms.


Extracellular matrix Cuticle Body shape Evolution Barrier 



I am deeply thankful to Dr. Zhitao Yu, Department of Entomology, Kansas State University, Manhattan, USA, for her substantial contribution to the figures.


  1. Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14(5):453–463Google Scholar
  2. Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38(10):959–962Google Scholar
  3. Araujo SJ, Aslam H, Tear G, Casanova J (2005) Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development–analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 288(1):179–193Google Scholar
  4. Berlese A (1909) Gli insetti – loro organizzazione, sviluppo, abitudini e rapporti coll’uomo. Milano, Società Editrice LibreriaGoogle Scholar
  5. Bouligand Y (1965) On a twisted fibrillar arrangement common to several biologic structures. C R Acad Sci Hebd Seances Acad Sci D 261(22):4864–4867Google Scholar
  6. Braconnot H (1811) Sur la nature des champignons. Annales de chimie ou recueil de mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie 79:265–304Google Scholar
  7. Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV, Arnold T, Brockmann S, Ruhnow M, Born R (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168(3):539–547Google Scholar
  8. Callister WD, Rethwisch DG (2013) Materials science and engineering: an introduction. Wiley, New YorkGoogle Scholar
  9. Carlstrom D (1957) The crystal structure of alpha-chitin (poly-N-acetyl-D-glucosamine). J Biophys Biochem Cytol 3(5):669–683Google Scholar
  10. Chapman RF (2013) The Insects. Cambridge, Cambridge University Press, Structure and FunctionGoogle Scholar
  11. Cornman RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS ONE 4(12):e8345Google Scholar
  12. Cornman RS (2010) The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein-protein interactions. PLoS One 5(9)Google Scholar
  13. Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, Willis JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genom 9:22Google Scholar
  14. Cornman RS, Willis JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem Mol Biol 38(6):661–676Google Scholar
  15. Cornman RS, Willis JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol 18(5):607–622Google Scholar
  16. Crini G, Badot P-M, Guibal E (2007) Chitine et chitosane – Du biopolymère à l’application, Presse universitaire de Franche-ComtéGoogle Scholar
  17. Dauby P, Jeuniaux C (1986) Origine exogène de la chitine décelée chez les Spongiaires. Cah Biol Mar 28:121–129Google Scholar
  18. Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289(33):23020–23028Google Scholar
  19. Ehrlich H, Krautter M, Hanke T, Simon P, Knieb C, Heinemann S, Worch H (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool B Mol Dev Evol 308(4):473–483Google Scholar
  20. Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evol 308(4):347–356Google Scholar
  21. Ehrlich H, Rigby JK, Botting JP, Tsurkan MV, Werner C, Schwille P, Petrasek Z, Pisera A, Simon P, Sivkov VN, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Hunoldt S, Born R, Stawski D, Steinhof A, Bazhenov VV, Geisler T (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497Google Scholar
  22. Fränkel S, Kelly A (1901) Beiträge zur Constitution des Chitins. Monatsh Chem 23(2):123–132Google Scholar
  23. Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38(12):1138–1146Google Scholar
  24. Gangishetti U, Breitenbach S, Zander M, Saheb SK, Muller U, Schwarz H, Moussian B (2009) Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur J Cell Biol 88(3):167–180Google Scholar
  25. Goncalves IR, Brouillet S, Soulie MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M (2016) Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 16(1):252Google Scholar
  26. Gonell HW (1926) Rontgenographische Studien an Chitin. Hoppe-Seyler’s Zeitschrift fuer Physiologische Chemie Berlin 152:18–30Google Scholar
  27. Hamodrakas SJ, Willis JH, Iconomidou VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem Mol Biol 32(11):1577–1583Google Scholar
  28. Harrison FW, Rice ME (1993) Onychophora, chilopoda, and lesser protostomata. John Wiley, New YorkGoogle Scholar
  29. Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105(1–2):129–133Google Scholar
  30. Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW (2004) Physicochemical characterization of alpha-chitin, beta-chitin, and gamma-chitin separated from natural resources. J Polym Sci Part A Polym Chem 42(14):3423–3432Google Scholar
  31. Jeuniaux C (1982) La chitine dans le regne animal. Bulletin de la Societe Zoologique de France 107(3):363–386Google Scholar
  32. Katz O (2018) Extending the scope of Darwin’s ‘abominable mystery’: integrative approaches to understanding angiosperm origins and species richness. Ann Bot 121(1):1–8Google Scholar
  33. Lease HM, Wolf BO (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol 271(6):759–768Google Scholar
  34. Ledderhose G (1876) Über salzsaures Glucosamin.” Berichte der deutschen chemischen Gesellschaft: 1200–1201Google Scholar
  35. Locke M (1966) The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J Morphol 118(4):461–494Google Scholar
  36. Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6(2):58–59Google Scholar
  37. Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16(2):186–194Google Scholar
  38. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206(Pt 24):4393–4412Google Scholar
  39. Meyer KH, Pankow G (1935) Sur la constitution et la structure de la chitine. Helv Chim Acta 18(1):589–598Google Scholar
  40. Minke R, Blackwell J (1978) The structure of alpha-chitin. J Mol Biol 120(2):167–181Google Scholar
  41. Miserez A, Rubin D, Waite JH (2010) Cross-linking chemistry of squid beak. J Biol Chem 285(49):38115–38124Google Scholar
  42. Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871):1816–1819Google Scholar
  43. Morgulis S (1916) The Chemical Constitution of Chitin. Science 44(1146):866–867Google Scholar
  44. Moussian B (2008) The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 149(2):215–226Google Scholar
  45. Moussian B (2013) The Arthropod Cuticle. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin, Heidelberg, pp 171–196Google Scholar
  46. Moussian B, Schwarz H, Bartoszewski S, Nusslein-Volhard C (2005) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264(1):117–130Google Scholar
  47. Moussian B, Tang E, Tonning A, Helms S, Schwarz H, Nusslein-Volhard C, Uv AE (2006) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133(1):163–171Google Scholar
  48. Mushi NE, Butchosa N, Salajkova M, Zhou Q, Berglund LA (2014) Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydr Polym 112:255–263Google Scholar
  49. Nepi M, Grasso DA, Mancuso S (2018) Nectar in Plant-Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. Front Plant Sci 9:1063Google Scholar
  50. Neville AC (1975) Biology of the arthropod cuticle. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  51. Neville AC, Luke BM (1969) A Two-system model for chitin-protein complexes in insect cuticles. Tissue Cell 1(4):689–707Google Scholar
  52. Nishino T, Matsui R, Nakamae K (1999) Elastic modulus of the crystalline regions of chitin and chitosan. J Polym Sci B: Polym Phys 37(11):1191–1196Google Scholar
  53. Odier A (1823) Mémoires sur la composition chimique des parties cornées des insectes. Mémoires de la Société d’Histoire Naturelle de Paris 1:29–42Google Scholar
  54. Peters W (1972) Occurrence of chitin in Mollusca. Comparat Biochem Physiol B 41((3)):541–550Google Scholar
  55. Raabe D, Al-Sawalmih A, Yi SB, Fabritius H (2007) Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater 3(6):882–895Google Scholar
  56. Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H-G, Yi S-B, Servos G, Hartwig HG (2005a) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283(1–2):1–7Google Scholar
  57. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 421(1–2):143–153Google Scholar
  58. Raabe D, Sachs C, Romano P (2005b) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292Google Scholar
  59. Rosenfeld JA, Reeves D, Brugler MR, Narechania A, Simon S, Durrett R, Foox J, Shianna K, Schatz MC, Gandara J, Afshinnekoo E, Lam ET, Hastie AR, Chan S, Cao H, Saghbini M, Kentsis A, Planet PJ, Kholodovych V, Tessler M, Baker R, DeSalle R, Sorkin LN, Kolokotronis SO, Siddall ME, Amato G, Mason CE (2016) Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat Commun 7:10164Google Scholar
  60. Rudall KM (1963) The chitin/protein complexes of insect cuticles. Treherne & Wiggles-worth, vol 1, Beament, Treherne & Wiggles-worth, vol 1, pp 257–313, 24 figs, pp 257–313Google Scholar
  61. Schimmelpfeng K, Strunk M, Stork T, Klambt C (2006) Mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development. Mech Dev 123(6):487–499Google Scholar
  62. Schonitzer V, Weiss IM (2007) The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct Biol 7:71Google Scholar
  63. Semino CE, Allende ML (2000) Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int J Dev Biol 44(2):183–193Google Scholar
  64. Semino CE, Specht CA, Raimondi A, Robbins PW (1996) Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc Natl Acad Sci U S A 93(10):4548–4553Google Scholar
  65. Sikorski P, Hori R, Wada M (2009) Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromol 10(5):1100–1105Google Scholar
  66. Städeler G (1859) Untersuchungen über das Fibroin, Spongin und Chitin, nebst Bemerkungen über den thierischen Schleim. Justus Liebig Annalen der Chemie 111(1):12–28Google Scholar
  67. Tang WJ, Fernandez J, Sohn JJ, Amemiya CT (2015) Chitin is endogenously produced in vertebrates. Curr Biol 25(7):897–900Google Scholar
  68. Tonning A, Helms S, Schwarz H, Uv AE, Moussian B (2006) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133(2):331–341Google Scholar
  69. Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, Uv A (2005) A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev Cell 9(3):423–430Google Scholar
  70. van Eldijk TJB, Wappler T, Strother PK, van der Weijst CMH, Rajaei H, Visscher H, van de Schootbrugge B (2018) A Triassic-Jurassic window into the evolution of Lepidoptera. Sci Adv 4(1):e1701568Google Scholar
  71. Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33(3):187–199Google Scholar
  72. Watson BD (1965) The fine structure of the body-wall in a free-living nematode, Euchromadora vulgaris. Quart. J. micr. Sci. 106(1):75–81Google Scholar
  73. Wester DH (1909) “Über die Verbreitung und Lokalisation des Chitins im Tierreich “ Zool. Jahrb. Abt. Syst. 28:531–558Google Scholar
  74. Wharton D (1980) Nematode egg-shells. Parasitology 81(2):447–463Google Scholar
  75. Wharton DA, Jenkins T (1978) Structure and chemistry of the egg-shell of a nematode (Trichuris suis). Tissue Cell 10(3):427–440Google Scholar
  76. Yu Z, Lau D (2015) molecular dynamics study on stiffness and ductility in chitin-protein composite. J Mater Sci 50:7149–7157Google Scholar
  77. Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 6(2):316–325Google Scholar
  78. Zhang J, Liu X, Zhang J, Li D, Sun Y, Guo Y, Ma E, Zhu KY (2010) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40(11):824–833Google Scholar
  79. Zhang Q, Mey W, Ansorge J, Starkey TA, McDonald LT, McNamara ME, Jarzembowski EA, Wichard W, Kelly R, Ren X, Chen J, Zhang H, Wang B (2018) Fossil scales illuminate the early evolution of lepidopterans and structural colors. Sci Adv 4(4):e1700988Google Scholar
  80. Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285(2):330–339Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Université Côte d’Azur, CNRS, Inserm, Institute of Biology ValroseParc Valrose, NiceFrance

Personalised recommendations