Advertisement

Specifics 1: Head and Neck Cancer and Esophageal Cancer

  • Shuhei Ito
  • Kensuke Koike
  • Koshi MimoriEmail author
Chapter

Abstract

Head and neck cancer (HNC) and esophageal cancer (EC) are aggressive diseases associated with high morbidity and mortality. The poor prognosis is mainly attributed to the absence of specific symptoms during early-stage cancer and the lack of reliable biomarkers. The identification of biomarkers has the potential to aid early diagnosis and prediction of recurrence and therapeutic efficacy. Biomarkers can also enable the improvement of long-term prognosis through personalized treatment strategies. The discovery of noninvasive methods to detect and monitor tumors remains a major challenge in clinical oncology. In this chapter, we review the development and feasibility of biomarkers, especially via “liquid biopsy,” such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating microRNAs (miRNAs), and autoantibodies against tumor-associated antigens (TAAs). We highlight new insights into the biomarkers of HNC and EC in clinical application and identify promising avenues of research in this emerging field of study, ultimately leading to improved HNC and EC patient care.

Keywords

Esophageal cancer Head and neck cancer Liquid biopsy Circulating tumor cell Cell-free DNA 

References

  1. 1.
    Nonaka T, Wong DTW. Liquid biopsy in head and neck cancer: promises and challenges. J Dent Res. 2018;97:701–8.CrossRefGoogle Scholar
  2. 2.
    Rusz O, Pal M, Szilagyi E, Rovo L, Varga Z, Tomisa B, Fabian G, Kovacs L, Nagy O, Mozes P, et al. The expression of checkpoint and DNA repair genes in head and neck cancer as possible predictive factors. Pathol Oncol Res. 2017;23:253–64.  https://doi.org/10.1007/s12253-016-0088-z.CrossRefPubMedGoogle Scholar
  3. 3.
    Rave-Frank M. Tumour-derived plasma cell-free DNA in patients with head and neck cancer: a short review. Cancer Radiother. 2017;21:554–6.CrossRefGoogle Scholar
  4. 4.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.  https://doi.org/10.1038/nrc2342.CrossRefPubMedGoogle Scholar
  5. 5.
    Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.  https://doi.org/10.1038/nrc3399.CrossRefPubMedGoogle Scholar
  6. 6.
    Bellairs JA, Hasina R, Agrawal N. Tumor DNA: an emerging biomarker in head and neck cancer. Cancer Metastasis Rev. 2017;36:515–23.  https://doi.org/10.1007/s10555-017-9685-x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M, James N, Rettig EM, Guo T, Pickering CR, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):293ra104.CrossRefGoogle Scholar
  8. 8.
    Perdomo S, Avogbe PH, Foll M, Abedi-Ardekani B, Facciolla VL, Anantharaman D, Chopard P, Calvez-Kelm FL, Vilensky M, Polesel J, et al. Circulating tumor DNA detection in head and neck cancer: evaluation of two different detection approaches. Oncotarget. 2017;8:72621–32.  https://doi.org/10.18632/oncotarget.20004.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kagara N, Noguchi S. ctDNA and cfDNA: basics and clinical relevance. Jpn J Breast Cancer. 2017;32(1):15–20.Google Scholar
  10. 10.
    Xiqiang L, Zugen C, Jinsheng Y, James X, Xiaofeng Z. MicroRNA profiling and head and neck cancer. Comp Funct Genom. 2009;2009:837514.  https://doi.org/10.1155/2009/837514.CrossRefGoogle Scholar
  11. 11.
    Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37(7):766–70.CrossRefGoogle Scholar
  12. 12.
    Lewis BP, Shih I-H, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.CrossRefGoogle Scholar
  13. 13.
    Chang SS, Wei WW, Smith I, et al. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer. 2008;123(12):2791–7.CrossRefGoogle Scholar
  14. 14.
    Si M-L, Zhu S, Wu H, Lu Z, Wu F, Mo Y-Y. MiR-21 mediated tumor growth. Oncogene. 2007;26(19):2799–803.CrossRefGoogle Scholar
  15. 15.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.CrossRefGoogle Scholar
  16. 16.
    Chen Y, Liu W, Chao T, et al. MicroRNA-21 downregulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett. 2008;272(2):197–205.CrossRefGoogle Scholar
  17. 17.
    Wong T-S, Liu X-B, Wong BY-H, Ng RW-M, Yuen AP-W, Wei WI. MaturemiR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14(9):2588–92.CrossRefGoogle Scholar
  18. 18.
    Wong T-S, Liu X-B, Ho AC-W, Yuen AP-W, Ng RW-M, Wei WI. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer. 2008;123(2):251–7.CrossRefGoogle Scholar
  19. 19.
    Kozaki K-I, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105.CrossRefGoogle Scholar
  20. 20.
    Monique C, Jelle J, Grenman R, Wessels LF, Kerkhoven R, Hein T, Michiel WM, Verheij M, Begg AC. Pretreatment microRNA expression impacting on epithelial-to mesenchymal transition predicts intrinsic radiosensitivity in head and neck cancer cell lines and patients. Clin Cancer Res. 2015;21:5630–8.CrossRefGoogle Scholar
  21. 21.
    Mariko O, Maki Y, Takaaki T, et al. MicroRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer. Oncotarget. 2016;7(7):8223–39.Google Scholar
  22. 22.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.  https://doi.org/10.1002/ijc.29210.CrossRefGoogle Scholar
  23. 23.
    Allum WH, Stenning SP, Bancewicz J, Clark PI, Langley RE. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009;27(30):5062–7.  https://doi.org/10.1200/JCO.2009.22.2083.CrossRefPubMedGoogle Scholar
  24. 24.
    Ando N, Kato H, Igaki H, Shinoda M, Ozawa S, Shimizu H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol. 2012;19(1):68–74.  https://doi.org/10.1245/s10434-011-2049-9.CrossRefPubMedGoogle Scholar
  25. 25.
    Kondo H, Fukuda H, Ono H, Gotoda T, Saito D, Takahiro K, et al. Sodium thiosulfate solution spray for relief of irritation caused by Lugol’s stain in chromoendoscopy. Gastrointest Endosc. 2001;53(2):199–202.CrossRefGoogle Scholar
  26. 26.
    Stahl M, Lehmann N, Walz MK, Stuschke M, Wilke H. Prediction of prognosis after trimodal therapy in patients with locally advanced squamous cell carcinoma of the oesophagus. Eur J Cancer. 2012;48(16):2977–82.  https://doi.org/10.1016/j.ejca.2012.03.010.CrossRefPubMedGoogle Scholar
  27. 27.
    Bedenne L, Michel P, Bouche O, Milan C, Mariette C, Conroy T, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol. 2007;25(10):1160–8.  https://doi.org/10.1200/JCO.2005.04.7118.CrossRefPubMedGoogle Scholar
  28. 28.
    Shimada H, Nabeya Y, Okazumi S, Matsubara H, Shiratori T, Gunji Y, et al. Prediction of survival with squamous cell carcinoma antigen in patients with resectable esophageal squamous cell carcinoma. Surgery. 2003;133(5):486–94.  https://doi.org/10.1067/msy.2003.139.CrossRefPubMedGoogle Scholar
  29. 29.
    Shimada H, Nabeya Y, Okazumi S, Matsubara H, Miyazawa Y, Shiratori T, et al. Prognostic significance of CYFRA 21-1 in patients with esophageal squamous cell carcinoma. J Am Coll Surg. 2003;196(4):573–8.CrossRefGoogle Scholar
  30. 30.
    Shimada H, Nabeya Y, Okazumi S, Matsubara H, Funami Y, Shiratori T, et al. Prognostic significance of serum p53 antibody in patients with esophageal squamous cell carcinoma. Surgery. 2002;132(1):41–7.CrossRefGoogle Scholar
  31. 31.
    Zhang H, Xia J, Wang K, Zhang J. Serum autoantibodies in the early detection of esophageal cancer: a systematic review. Tumour Biol. 2015;36(1):95–109.  https://doi.org/10.1007/s13277-014-2878-9.CrossRefPubMedGoogle Scholar
  32. 32.
    Toh Y, Oki E, Ohgaki K, Sakamoto Y, Ito S, Egashira A, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol. 2010;15(2):135–44.  https://doi.org/10.1007/s10147-010-0057-6.CrossRefPubMedGoogle Scholar
  33. 33.
    Mandard AM, Hainaut P, Hollstein M. Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res. 2000;462(2–3):335–42.CrossRefGoogle Scholar
  34. 34.
    Sawada G, Niida A, Uchi R, Hirata H, Shimamura T, Suzuki Y, et al. Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology. 2016;150(5):1171–82.  https://doi.org/10.1053/j.gastro.2016.01.035.CrossRefPubMedGoogle Scholar
  35. 35.
    Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509(7498):91–5.  https://doi.org/10.1038/nature13176.CrossRefPubMedGoogle Scholar
  36. 36.
    Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46(5):467–73.  https://doi.org/10.1038/ng.2935.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46(10):1097–102.  https://doi.org/10.1038/ng.3076.CrossRefPubMedGoogle Scholar
  38. 38.
    Tao CJ, Lin G, Xu YP, Mao WM. Predicting the response of neoadjuvant therapy for patients with esophageal carcinoma: an in-depth literature review. J Cancer. 2015;6(11):1179–86.  https://doi.org/10.7150/jca.12346.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kandioler D, Schoppmann SF, Zwrtek R, Kappel S, Wolf B, Mittlbock M, et al. The biomarker TP53 divides patients with neoadjuvantly treated esophageal cancer into 2 subgroups with markedly different outcomes. A p53 Research Group study. J Thorac Cardiovasc Surg. 2014;148(5):2280–6.  https://doi.org/10.1016/j.jtcvs.2014.06.079.CrossRefPubMedGoogle Scholar
  40. 40.
    Nakanoko T, Saeki H, Morita M, Nakashima Y, Ando K, Oki E, et al. Rad51 expression is a useful predictive factor for the efficacy of neoadjuvant chemoradiotherapy in squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2014;21(2):597–604.  https://doi.org/10.1245/s10434-013-3220-2.CrossRefPubMedGoogle Scholar
  41. 41.
    Yazbeck R, Jaenisch SE, Watson DI. From blood to breath: New horizons for esophageal cancer biomarkers. World J Gastroenterol. 2016;22(46):10077–83.  https://doi.org/10.3748/wjg.v22.i46.10077.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huang X, Gao P, Song Y, Sun J, Chen X, Zhao J, et al. Meta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch system in colorectal cancer. BMC Cancer. 2015;15:202.  https://doi.org/10.1186/s12885-015-1218-9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fetsch PA, Cowan KH, Weng DE, Freifield A, Filie AC, Abati A. Detection of circulating tumor cells and micrometastases in stage II, III, and IV breast cancer patients utilizing cytology and immunocytochemistry. Diagn Cytopathol. 2000;22(5):323–8.CrossRefGoogle Scholar
  44. 44.
    Lambrechts AC, Bosma AJ, Klaver SG, Top B, Perebolte L, van’ t Veer LJ, et al. Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence-based amplification for the detection of circulating breast cancer cells. Breast Cancer Res Treat. 1999;56(3):219–31.CrossRefGoogle Scholar
  45. 45.
    Matsushita D, Uenosono Y, Arigami T, Yanagita S, Nishizono Y, Hagihara T, et al. Clinical significance of circulating tumor cells in peripheral blood of patients with esophageal squamous cell carcinoma. Ann Surg Oncol. 2015;22(11):3674–80.  https://doi.org/10.1245/s10434-015-4392-8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hoeppner J, Kulemann B. Circulating tumor cells in esophageal cancer. Oncol Res Treat. 2017;40(7–8):417–22.  https://doi.org/10.1159/000478863.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang Z, Cui K, Xue Y, Tong F, Li S. Prognostic value of circulating tumor cells in patients with squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Med Oncol. 2015;32(5):164.  https://doi.org/10.1007/s12032-015-0579-x.CrossRefPubMedGoogle Scholar
  48. 48.
    Huang X, Gao P, Sun J, Chen X, Song Y, Zhao J, et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: a meta-analysis. Int J Cancer. 2015;136(1):21–33.  https://doi.org/10.1002/ijc.28954.CrossRefPubMedGoogle Scholar
  49. 49.
    Yang C, Zou K, Zheng L, Xiong B. Prognostic and clinicopathological significance of circulating tumor cells detected by RT-PCR in non-metastatic colorectal cancer: a meta-analysis and systematic review. BMC Cancer. 2017;17(1):725.  https://doi.org/10.1186/s12885-017-3704-8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Qiao GL, Qi WX, Jiang WH, Chen Y, Ma LJ. Prognostic significance of circulating tumor cells in esophageal carcinoma: a meta-analysis. Onco Targets Ther. 2016;9:1889–97.  https://doi.org/10.2147/OTT.S100005.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.  https://doi.org/10.1200/JCO.2012.45.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.  https://doi.org/10.1038/nm.1789.CrossRefPubMedGoogle Scholar
  53. 53.
    Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368–73.  https://doi.org/10.1073/pnas.0507904102.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.  https://doi.org/10.1126/scitranslmed.3007094.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.  https://doi.org/10.1038/nm.3519.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Luo H, Li H, Hu Z, Wu H, Liu C, Li Y, et al. Noninvasive diagnosis and monitoring of mutations by deep sequencing of circulating tumor DNA in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 2016;471(4):596–602.  https://doi.org/10.1016/j.bbrc.2016.02.011.CrossRefPubMedGoogle Scholar
  57. 57.
    Ueda M, Iguchi T, Masuda T, Nakahara Y, Hirata H, Uchi R, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016;7(38):62280–91.  https://doi.org/10.18632/oncotarget.11409.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Baba Y, Watanabe M, Baba H. Review of the alterations in DNA methylation in esophageal squamous cell carcinoma. Surg Today. 2013;43(12):1355–64.  https://doi.org/10.1007/s00595-012-0451-y.CrossRefPubMedGoogle Scholar
  59. 59.
    Kaz AM, Grady WM. Epigenetic biomarkers in esophageal cancer. Cancer Lett. 2014;342(2):193–9.  https://doi.org/10.1016/j.canlet.2012.02.036.CrossRefPubMedGoogle Scholar
  60. 60.
    Li X, Zhou F, Jiang C, Wang Y, Lu Y, Yang F, et al. Identification of a DNA methylome profile of esophageal squamous cell carcinoma and potential plasma epigenetic biomarkers for early diagnosis. PLoS One. 2014;9(7):e103162.  https://doi.org/10.1371/journal.pone.0103162.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Li B, Wang B, Niu LJ, Jiang L, Qiu CC. Hypermethylation of multiple tumor-related genes associated with DNMT3b up-regulation served as a biomarker for early diagnosis of esophageal squamous cell carcinoma. Epigenetics. 2011;6(3):307–16.CrossRefGoogle Scholar
  62. 62.
    Lindner K, Haier J, Wang Z, Watson DI, Hussey DJ, Hummel R. Circulating microRNAs: emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clin Sci (Lond). 2015;128(1):1–15.  https://doi.org/10.1042/CS20140089.CrossRefGoogle Scholar
  63. 63.
    Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56.  https://doi.org/10.1038/nrclinonc.2014.5.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang Y, Wang Q, Zhang N, Ma H, Gu Y, Tang H, et al. Identification of microRNAs as novel biomarkers for detecting esophageal squamous cell carcinoma in Asians: a meta-analysis. Tumour Biol. 2014;35(11):11595–604.  https://doi.org/10.1007/s13277-014-2350-x.CrossRefPubMedGoogle Scholar
  65. 65.
    Fu W, Pang L, Chen Y, Yang L, Zhu J, Wei Y. The microRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. Sci World J. 2014;2014:523979.  https://doi.org/10.1155/2014/523979.CrossRefGoogle Scholar
  66. 66.
    Fu C, Dong W, Wang Z, Li H, Qin Q, Li B. The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun. 2014;446(4):1197–203.  https://doi.org/10.1016/j.bbrc.2014.03.087.CrossRefPubMedGoogle Scholar
  67. 67.
    Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013;108(3):644–52.  https://doi.org/10.1038/bjc.2013.8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56(12):1871–9.  https://doi.org/10.1373/clinchem.2010.147553.CrossRefPubMedGoogle Scholar
  69. 69.
    Komatsu S, Ichikawa D, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, et al. Circulating miR-21 as an independent predictive biomarker for chemoresistance in esophageal squamous cell carcinoma. Am J Cancer Res. 2016;6(7):1511–23.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tanaka K, Miyata H, Yamasaki M, Sugimura K, Takahashi T, Kurokawa Y, et al. Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. Ann Surg Oncol. 2013;20(Suppl 3):S607–15.  https://doi.org/10.1245/s10434-013-3093-4.CrossRefPubMedGoogle Scholar
  71. 71.
    Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res. 2005;4(4):1123–33.  https://doi.org/10.1021/pr0500814.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009;276(23):6880–904.  https://doi.org/10.1111/j.1742-4658.2009.07396.x.CrossRefPubMedGoogle Scholar
  73. 73.
    Tan EM. Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest. 2001;108(10):1411–5.  https://doi.org/10.1172/JCI14451.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tan EM, Zhang J. Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev. 2008;222:328–40.  https://doi.org/10.1111/j.1600-065X.2008.00611.x.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53.CrossRefGoogle Scholar
  76. 76.
    Egashira A, Morita M, Kakeji Y, Sadanaga N, Oki E, Honbo T, et al. p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis: results in Japan and comparisons with other countries. Cancer Sci. 2007;98(8):1152–6.  https://doi.org/10.1111/j.1349-7006.2007.00524.x.CrossRefPubMedGoogle Scholar
  77. 77.
    Wu M, Mao C, Chen Q, Cu XW, Zhang WS. Serum p53 protein and anti-p53 antibodies are associated with increased cancer risk: a case-control study of 569 patients and 879 healthy controls. Mol Biol Rep. 2010;37(1):339–43.  https://doi.org/10.1007/s11033-009-9744-7.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhang J, Xv Z, Wu X, Li K. Potential diagnostic value of serum p53 antibody for detecting esophageal cancer: a meta-analysis. PLoS One. 2012;7(12):e52896.  https://doi.org/10.1371/journal.pone.0052896.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamashita K, Makino T, Tanaka K, Yamasaki M, Yamamoto M, Miyazaki Y, et al. Peritherapeutic serum p53 antibody titers are predictors of survival in patients with esophageal squamous cell carcinoma undergoing neoadjuvant chemotherapy and surgery. World J Surg. 2017;41(6):1566–74.  https://doi.org/10.1007/s00268-017-3894-x.CrossRefPubMedGoogle Scholar
  80. 80.
    Hiyoshi Y, Yoshida N, Watanabe M, Kurashige J, Baba Y, Sakamoto Y, et al. The presence of serum p53 antibody predicts the pathological tumor response to neoadjuvant chemotherapy with Docetaxel, Cisplatin and Fluorouracil (DCF) in esophageal squamous cell carcinoma. World J Surg. 2017;41(2):480–6.  https://doi.org/10.1007/s00268-016-3649-0.CrossRefPubMedGoogle Scholar
  81. 81.
    Oshima Y, Shimada H, Yajima S, Nanami T, Matsushita K, Nomura F, et al. NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: screening in 1969 patients with various cancers. J Gastroenterol. 2016;51(1):30–4.  https://doi.org/10.1007/s00535-015-1078-8.CrossRefPubMedGoogle Scholar
  82. 82.
    Wada H, Isobe M, Kakimi K, Mizote Y, Eikawa S, Sato E, et al. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. J Immunother. 2014;37(2):84–92.  https://doi.org/10.1097/CJI.0000000000000017.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang J, Zhu Z, Liu Y, Jin X, Xu Z, Yu Q, et al. Diagnostic value of multiple tumor markers for patients with esophageal carcinoma. PLoS One. 2015;10(2):e0116951.  https://doi.org/10.1371/journal.pone.0116951.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cheng JC, Graber MS, Hsu FM, Tsai CL, Castaneda L, Lee JM, et al. High serum levels of vascular endothelial growth factor-A and transforming growth factor-beta1 before neoadjuvant chemoradiotherapy predict poor outcomes in patients with esophageal squamous cell carcinoma receiving combined modality therapy. Ann Surg Oncol. 2014;21(7):2361–8.  https://doi.org/10.1245/s10434-014-3611-z.CrossRefPubMedGoogle Scholar
  85. 85.
    Makuuchi Y, Honda K, Osaka Y, Kato K, Kojima T, Daiko H, et al. Soluble interleukin-6 receptor is a serum biomarker for the response of esophageal carcinoma to neoadjuvant chemoradiotherapy. Cancer Sci. 2013;104(8):1045–51.  https://doi.org/10.1111/cas.12187.CrossRefPubMedGoogle Scholar
  86. 86.
    Zhou C, Li J, Li Q. CDKN2A methylation in esophageal cancer: a meta-analysis. Oncotarget. 2017;8(30):50071–83.  https://doi.org/10.18632/oncotarget.18412.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208–15.  https://doi.org/10.1172/JCI81135.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522.  https://doi.org/10.3402/jev.v4.27522.CrossRefPubMedGoogle Scholar
  89. 89.
    Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119(6):1159–67.  https://doi.org/10.1002/cncr.27895.CrossRefPubMedGoogle Scholar
  90. 90.
    Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19(7):1208–15.  https://doi.org/10.1007/s11605-015-2829-9.CrossRefPubMedGoogle Scholar
  91. 91.
    Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43.  https://doi.org/10.3892/or.2016.5066.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, et al. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS One. 2013;8(9):e75274.  https://doi.org/10.1371/journal.pone.0075274.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Xu ZQ, Broza YY, Ionsecu R, Tisch U, Ding L, Liu H, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941–50.  https://doi.org/10.1038/bjc.2013.44.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542–51.  https://doi.org/10.1038/sj.bjc.6605810.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J, et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007;3(2):95–109.CrossRefGoogle Scholar
  96. 96.
    Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 2010;4(2):026003.  https://doi.org/10.1088/1752-7155/4/2/026003.CrossRefPubMedGoogle Scholar
  97. 97.
    Kumar S, Huang J, Abbassi-Ghadi N, Mackenzie HA, Veselkov KA, Hoare JM, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981–90.  https://doi.org/10.1097/SLA.0000000000001101.CrossRefPubMedGoogle Scholar
  98. 98.
    Zou X, Zhou W, Lu Y, Shen C, Hu Z, Wang H, et al. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry. J Gastroenterol Hepatol. 2016;31(11):1837–43.  https://doi.org/10.1111/jgh.13380.CrossRefPubMedGoogle Scholar
  99. 99.
    Huang J, Kumar S, Abbassi-Ghadi N, Spanel P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Anal Chem. 2013;85(6):3409–16.  https://doi.org/10.1021/ac4000656.CrossRefPubMedGoogle Scholar
  100. 100.
    Kumar S, Huang J, Cushnir JR, Spanel P, Smith D, Hanna GB. Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer. Anal Chem. 2012;84(21):9550–7.  https://doi.org/10.1021/ac302409a.CrossRefPubMedGoogle Scholar
  101. 101.
    Hirotsu T, Sonoda H, Uozumi T, Shinden Y, Mimori K, Maehara Y, et al. A highly accurate inclusive cancer screening test using Caenorhabditis elegans scent detection. PLoS One. 2015;10(3):e0118699.  https://doi.org/10.1371/journal.pone.0118699.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Phillips WA, Lord RV, Nancarrow DJ, Watson DI, Whiteman DC. Barrett’s esophagus. J Gastroenterol Hepatol. 2011;26(4):639–48.  https://doi.org/10.1111/j.1440-1746.2010.06602.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of SurgeryKyushu University Beppu HospitalBeppuJapan
  2. 2.Department of SurgeryNational Fukuoka-Higashi Medical Center, Chidori, KogaFukuokaJapan

Personalised recommendations