Advertisement

Biomarkers of Gynecological Cancers

  • Tatsuyuki ChiyodaEmail author
  • Ai Dozen
  • Keiko Saotome
  • Yoshiko Nanki
  • Daisuke Aoki
Chapter

Abstract

Tumor markers are molecules or substances produced by malignant tumors or the surrounding tissues that enter the circulation in detectable amounts. The majority of biomarkers are tumor-associated rather than tumor-specific and show elevated levels in multiple cancers. Tumor markers thus can be helpful for differential diagnosis but are not themselves diagnostic. In the field of gynecologic malignancies, biomarkers of ovarian cancer have been eagerly investigated owing to the difficulty in screening. Despite large efforts to develop novel biomarkers, cancer antigen 125 (CA125) has been the only biomarker clinically used, and no other marker has been able to outperform CA125. Noncoding RNAs, metabolites, and circulating tumor DNAs have recently emerged as cancer biomarkers and are being applied to clinical practice. Genomic biomarkers with predictive values are now used to select therapeutic drugs, especially molecular-targeted drugs. In this chapter, we describe ovarian cancer biomarkers in detail. In addition, biomarkers of uterine cancer and cervical cancer are summarized.

Keywords

Ovarian cancer Uterine cancer Cervical cancer Biomarker CA125 BRCA Homologous recombination Microsatellite instability Noncoding RNA 

References

  1. 1.
    GLOBOCAN. Estimated cancer incidence, mortality and prevalence worldwide in 2012. Available from http://globocan.iarc.fr/Pages/fact_sheets_population.aspx (2012).
  2. 2.
    Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009;40(9):1213–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang WL, Lu Z, Bast RC Jr. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev Mol Diagn. 2017;17(6):577–91.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest. 1981;68(5):1331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kabawat SE, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB. Tissue distribution of a coelomic-epithelium-related antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol. 1983;2(3):275–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Bast RC Jr, Klug TL, St John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983;309(15):883–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Bon GG, Kenemans P, Verstraeten R, van Kamp GJ, Hilgers J. Serum tumor marker immunoassays in gynecologic oncology: establishment of reference values. Am J Obstet Gynecol. 1996;174(1 Pt 1):107–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobs I, Bast RC Jr. The CA 125 tumour-associated antigen: a review of the literature. Hum Reprod. 1989;4(1):1–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Moore RG, Miller MC, Steinhoff MM, Skates SJ, Lu KH, Lambert-Messerlian G, et al. Serum HE4 levels are less frequently elevated than CA125 in women with benign gynecologic disorders. Am J Obstet Gynecol. 2012;206(4):351.e1–8.CrossRefGoogle Scholar
  10. 10.
    Escudero JM, Auge JM, Filella X, Torne A, Pahisa J, Molina R. Comparison of serum human epididymis protein 4 with cancer antigen 125 as a tumor marker in patients with malignant and nonmalignant diseases. Clin Chem. 2011;57(11):1534–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Rustin GJ, van der Burg ME, Berek JS. Advanced ovarian cancer. Tumour markers. Ann Oncol. 1993;4(Suppl 4):71–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Berek JS, Bast RC Jr. Ovarian cancer screening. The use of serial complementary tumor markers to improve sensitivity and specificity for early detection. Cancer. 1995;76(10 Suppl):2092–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Skates SJ, Xu FJ, Yu YH, Sjovall K, Einhorn N, Chang Y, et al. Toward an optimal algorithm for ovarian cancer screening with longitudinal tumor markers. Cancer. 1995;76(10 Suppl):2004–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobs IJ, Skates SJ, MacDonald N, Menon U, Rosenthal AN, Davies AP, et al. Screening for ovarian cancer: a pilot randomised controlled trial. Lancet. 1999;353(9160):1207–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Genetic risk and screening techniques for epithelial ovarian cancer. ACOG Committee Opinion: Committee on Gynecologic Practice. Number 117—December 1992. Int J Gynaecol Obstet. 1993;41(3):321–3.Google Scholar
  16. 16.
    Woodward ER, Sleightholme HV, Considine AM, Williamson S, McHugo JM, Cruger DG. Annual surveillance by CA125 and transvaginal ultrasound for ovarian cancer in both high-risk and population risk women is ineffective. BJOG. 2007;114(12):1500–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Hermsen BB, Olivier RI, Verheijen RH, van Beurden M, de Hullu JA, Massuger LF, et al. No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers; an observational follow-up study. Br J Cancer. 2007;96(9):1335–42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bonfrer JM, Korse CM, Verstraeten RA, van Kamp GJ, Hart GA, Kenemans P. Clinical evaluation of the Byk LIA-mat CA125 II assay: discussion of a reference value. Clin Chem. 1997;43(3):491–7.PubMedGoogle Scholar
  19. 19.
    Jacobs I, Davies AP, Bridges J, Stabile I, Fay T, Lower A, et al. Prevalence screening for ovarian cancer in postmenopausal women by CA 125 measurement and ultrasonography. BMJ. 1993;306(6884):1030–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Menon U, Skates SJ, Lewis S, Rosenthal AN, Rufford B, Sibley K, et al. Prospective study using the risk of ovarian cancer algorithm to screen for ovarian cancer. J Clin Oncol. 2005;23(31):7919–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu KH, Skates S, Hernandez MA, Bedi D, Bevers T, Leeds L, et al. A 2-stage ovarian cancer screening strategy using the Risk of Ovarian Cancer Algorithm (ROCA) identifies early-stage incident cancers and demonstrates high positive predictive value. Cancer. 2013;119(19):3454–61.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Menon U, Ryan A, Kalsi J, Gentry-Maharaj A, Dawnay A, Habib M, et al. Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. J Clin Oncol. 2015;33(18):2062–71.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kobayashi H, Yamada Y, Sado T, Sakata M, Yoshida S, Kawaguchi R, et al. A randomized study of screening for ovarian cancer: a multicenter study in Japan. Int J Gynecol Cancer. 2008;18(3):414–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 2009;10(4):327–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2016;387(10022):945–56.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA. 2011;305(22):2295–303.PubMedCrossRefGoogle Scholar
  27. 27.
    Partridge E, Kreimer AR, Greenlee RT, Williams C, Xu JL, Church TR, et al. Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol. 2009;113(4):775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81(2):214–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33(26):2901–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ramus SJ, Song H, Dicks E, Tyrer JP, Rosenthal AN, Intermaggio MP, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107(11).Google Scholar
  32. 32.
    Olivier RI, Lubsen-Brandsma MA, Verhoef S, van Beurden M. CA125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer. Gynecol Oncol. 2006;100(1):20–6.PubMedCrossRefGoogle Scholar
  33. 33.
    NCCN Clinical Practice Guidelines in Oncology. Genetic/familial high-risk assessment: breast and ovarian. Version 2. 2017.Google Scholar
  34. 34.
    Rosenthal AN, Fraser LSM, Philpott S, Manchanda R, Burnell M, Badman P, et al. Evidence of stage shift in women diagnosed with ovarian cancer during phase II of the United Kingdom Familial Ovarian Cancer Screening Study. J Clin Oncol. 2017;35(13):1411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Skates SJ, Greene MH, Buys SS, Mai PL, Brown P, Piedmonte M, et al. early detection of ovarian cancer using the risk of ovarian cancer algorithm with frequent CA125 testing in women at increased familial risk – combined results from two screening trials. Clin Cancer Res. 2017;23(14):3628–37.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jeyarajah AR, Ind TE, Skates S, Oram DH, Jacobs IJ. Serum CA125 elevation and risk of clinical detection of cancer in asymptomatic postmenopausal women. Cancer. 1999;85(9):2068–72.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jeyarajah AR, Ind TE, MacDonald N, Skates S, Oram DH, Jacobs IJ. Increased mortality in postmenopausal women with serum CA125 elevation. Gynecol Oncol. 1999;73(2):242–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sjovall K, Nilsson B, Einhorn N. The significance of serum CA 125 elevation in malignant and nonmalignant diseases. Gynecol Oncol. 2002;85(1):175–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Hogdall CK, Norgaard-Pedersen B, Mogensen O. The prognostic value of pre-operative serum tetranectin, CA-125 and a combined index in women with primary ovarian cancer. Anticancer Res. 2002;22(3):1765–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Petri AL, Hogdall E, Christensen IJ, Kjaer SK, Blaakaer J, Hogdall CK. Preoperative CA125 as a prognostic factor in stage I epithelial ovarian cancer. APMIS. 2006;114(5):359–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Paramasivam S, Tripcony L, Crandon A, Quinn M, Hammond I, Marsden D, et al. Prognostic importance of preoperative CA-125 in International Federation of Gynecology and Obstetrics stage I epithelial ovarian cancer: an Australian multicenter study. J Clin Oncol. 2005;23(25):5938–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Makar AP, Kristensen GB, Kaern J, Bormer OP, Abeler VM, Trope CG. Prognostic value of pre- and postoperative serum CA 125 levels in ovarian cancer: new aspects and multivariate analysis. Obstet Gynecol. 1992;79(6):1002–10.PubMedGoogle Scholar
  43. 43.
    Markman M, Liu PY, Rothenberg ML, Monk BJ, Brady M, Alberts DS. Pretreatment CA-125 and risk of relapse in advanced ovarian cancer. J Clin Oncol. 2006;24(9):1454–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Makar AP, Kristensen GB, Bormer OP, Trope CG. Is serum CA 125 at the time of relapse a prognostic indicator for further survival prognosis in patients with ovarian cancer? Gynecol Oncol. 1993;49(1):3–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Gallion HH, Hunter JE, van Nagell JR, Averette HE, Cain JM, Copeland LJ, et al. The prognostic implications of low serum CA 125 levels prior to the second-look operation for stage III and IV epithelial ovarian cancer. Gynecol Oncol. 1992;46(1):29–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21(2):419–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Fehm T, Heller F, Kramer S, Jager W, Gebauer G. Evaluation of CA125, physical and radiological findings in follow-up of ovarian cancer patients. Anticancer Res. 2005;25(3a):1551–4.PubMedGoogle Scholar
  48. 48.
    Rustin GJ, van der Burg ME, Griffin CL, Guthrie D, Lamont A, Jayson GC, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet. 2010;376(9747):1155–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Soletormos G, Duffy MJ, Othman Abu Hassan S, Verheijen RH, Tholander B, Bast RC Jr, et al. Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European group on tumor markers. Int J Gynecol Cancer. 2016;26(1):43–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Schummer M, Ng WV, Bumgarner RE, Nelson PS, Schummer B, Bednarski DW, et al. Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene. 1999;238(2):375–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Kirchhoff C, Habben I, Ivell R, Krull N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod. 1991;45(2):350–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Drapkin R, von Horsten HH, Lin Y, Mok SC, Crum CP, Welch WR, et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005;65(6):2162–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Moore RG, Plante B, Hartnett E, Mitchel J, Raker CA, Vitek W, et al. Assessment of serum HE4 levels throughout the normal menstrual cycle. Am J Obstet Gynecol. 2017;217(1):53.e1–9.CrossRefGoogle Scholar
  54. 54.
    Urban N, Thorpe JD, Bergan LA, Forrest RM, Kampani AV, Scholler N, et al. Potential role of HE4 in multimodal screening for epithelial ovarian cancer. J Natl Cancer Inst. 2011;103(21):1630–4.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhu CS, Pinsky PF, Cramer DW, Ransohoff DF, Hartge P, Pfeiffer RM, et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. Cancer Prev Res (Phila). 2011;4(3):375–83.CrossRefGoogle Scholar
  56. 56.
    Moore RG, Miller MC, Eklund EE, Lu KH, Bast RC Jr, Lambert-Messerlian G. Serum levels of the ovarian cancer biomarker HE4 are decreased in pregnancy and increase with age. Am J Obstet Gynecol. 2012;206(4):349.e1–7.CrossRefGoogle Scholar
  57. 57.
    Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ, et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009;112(1):40–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Terry KL, Schock H, Fortner RT, Husing A, Fichorova RN, Yamamoto HS, et al. A prospective evaluation of early detection biomarkers for ovarian cancer in the European EPIC cohort. Clin Cancer Res. 2016;22(18):4664–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fortner RT, Vitonis AF, Schock H, Husing A, Johnson T, Fichorova RN, et al. Correlates of circulating ovarian cancer early detection markers and their contribution to discrimination of early detection models: results from the EPIC cohort. J Ovarian Res. 2017;10(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chudecka-Glaz A, Cymbaluk-Ploska A, Strojna A, Menkiszak J. HE4 serum levels in patients with BRCA1 gene mutation undergoing prophylactic surgery as well as in other benign and malignant gynecological diseases. Dis Markers. 2017;2017:9792756.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116(8):1918–25.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.PubMedCrossRefGoogle Scholar
  63. 63.
    Parkinson CA, Gale D, Piskorz AM, Biggs H, Hodgkin C, Addley H, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13(12):e1002198.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gloss BS, Samimi G. Epigenetic biomarkers in epithelial ovarian cancer. Cancer Lett. 2014;342(2):257–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Earp MA, Cunningham JM. DNA methylation changes in epithelial ovarian cancer histotypes. Genomics. 2015;106(6):311–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K, Kasimir-Bauer S, et al. ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecol Oncol. 2018;150(2):355–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006;66(22):10795–804.PubMedCrossRefGoogle Scholar
  68. 68.
    Buas MF, Gu H, Djukovic D, Zhu J, Drescher CW, Urban N, et al. Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecol Oncol. 2016;140(1):138–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67(18):8699–707.PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.CrossRefPubMedGoogle Scholar
  71. 71.
    Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112(1):55–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang S, Lu Z, Unruh AK, Ivan C, Baggerly KA, Calin GA, et al. Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res. 2015;13(3):393–401.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, et al. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep. 2016;6:38983.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhong Y, Gao D, He S, Shuai C, Peng S. Dysregulated expression of long noncoding RNAs in ovarian cancer. Int J Gynecol Cancer. 2016;26(9):1564–70.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Worku T, Bhattarai D, Ayers D, Wang K, Wang C, Rehman ZU, et al. Long non-coding RNAs: the new horizon of gene regulation in ovarian cancer. Cell Physiol Biochem. 2017;44(3):948–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Jarle Christensen I, Gayther S, et al. Protein expression levels of carcinoembryonic antigen (CEA) in Danish ovarian cancer patients: from the Danish ‘MALOVA’ ovarian cancer study. Pathology. 2008;40(5):487–92.PubMedCrossRefGoogle Scholar
  77. 77.
    Kawai M, Kano T, Kikkawa F, Morikawa Y, Oguchi H, Nakashima N, et al. Seven tumor markers in benign and malignant germ cell tumors of the ovary. Gynecol Oncol. 1992;45(3):248–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Chow SN, Yang JH, Lin YH, Chen YP, Lai JI, Chen RJ, et al. Malignant ovarian germ cell tumors. Int J Gynaecol Obstet. 1996;53(2):151–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Robertson DM, Pruysers E, Jobling T. Inhibin as a diagnostic marker for ovarian cancer. Cancer Lett. 2007;249(1):14–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Suzuki M, Ohwada M, Sato I, Nagatomo M. Serum level of macrophage colony-stimulating factor as a marker for gynecologic malignancies. Oncology. 1995;52(2):128–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Scambia G, Testa U, Benedetti Panici P, Foti E, Martucci R, Gadducci A, et al. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71(2):354–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lambeck AJ, Crijns AP, Leffers N, Sluiter WJ, ten Hoor KA, Braid M, et al. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7. Clin Cancer Res. 2007;13(8):2385–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Emami N, Diamandis EP. Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers. Clin Chem. 2008;54(10):1600–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Hu ZD, Wei TT, Yang M, Ma N, Tang QQ, Qin BD, et al. Diagnostic value of osteopontin in ovarian cancer: a meta-analysis and systematic review. PLoS One. 2015;10(5):e0126444.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Huang CY, Cheng WF, Lee CN, Su YN, Chien SC, Tzeng YL, et al. Serum mesothelin in epithelial ovarian carcinoma: a new screening marker and prognostic factor. Anticancer Res. 2006;26(6c):4721–8.PubMedGoogle Scholar
  86. 86.
    Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.Google Scholar
  87. 87.
    Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.CrossRefPubMedGoogle Scholar
  89. 89.
    Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol. 2012;30(4):372–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Stover EH, Konstantinopoulos PA, Matulonis UA, Swisher EM. Biomarkers of response and resistance to DNA repair targeted therapies. Clin Cancer Res. 2016;22(23):5651–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Gadducci A, Ferdeghini M, Prontera C, Giordano P, Cristofani R, Bianchi R, et al. A comparison of pretreatment serum levels of four tumor markers in patients with endometrial and cervical carcinoma. Eur J Gynaecol Oncol. 1990;11(4):283–8.PubMedGoogle Scholar
  92. 92.
    Kurihara T, Mizunuma H, Obara M, Andoh K, Ibuki Y, Nishimura T. Determination of a normal level of serum CA125 in postmenopausal women as a tool for preoperative evaluation and postoperative surveillance of endometrial carcinoma. Gynecol Oncol. 1998;69(3):192–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen YL, Huang CY, Chien TY, Huang SH, Wu CJ, Ho CM. Value of pre-operative serum CA125 level for prediction of prognosis in patients with endometrial cancer. Aust N Z J Obstet Gynaecol. 2011;51(5):397–402.PubMedCrossRefGoogle Scholar
  94. 94.
    Kalogera E, Scholler N, Powless C, Weaver A, Drapkin R, Li J, et al. Correlation of serum HE4 with tumor size and myometrial invasion in endometrial cancer. Gynecol Oncol. 2012;124(2):270–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Brennan DJ, Hackethal A, Metcalf AM, Coward J, Ferguson K, Oehler MK, et al. Serum HE4 as a prognostic marker in endometrial cancer—a population based study. Gynecol Oncol. 2014;132(1):159–65.PubMedCrossRefGoogle Scholar
  96. 96.
    Vallone C, Rigon G, Gulia C, Baffa A, Votino R, Morosetti G, et al. Non-coding RNAs and endometrial cancer. Genes. 2018;9(4).PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1(9):1319–23.PubMedCrossRefGoogle Scholar
  99. 99.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kato H, Torigoe T. Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma. Cancer. 1977;40(4):1621–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Gadducci A, Tana R, Fanucchi A, Genazzani AR. Biochemical prognostic factors and risk of relapses in patients with cervical cancer. Gynecol Oncol. 2007;107(1 Suppl 1):S23–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Charakorn C, Thadanipon K, Chaijindaratana S, Rattanasiri S, Numthavaj P, Thakkinstian A. The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: a systematic review and meta-analysis. Gynecol Oncol. 2018;150(1):190–200.PubMedCrossRefGoogle Scholar
  103. 103.
    Bonfrer JM, Gaarenstroom KN, Kenter GG, Korse CM, Hart AA, Gallee MP, et al. Prognostic significance of serum fragments of cytokeratin 19 measured by Cyfra 21-1 in cervical cancer. Gynecol Oncol. 1994;55(3 Pt 1):371–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Gadducci A, Tana R, Cosio S, Genazzani AR. The serum assay of tumour markers in the prognostic evaluation, treatment monitoring and follow-up of patients with cervical cancer: a review of the literature. Crit Rev Oncol Hematol. 2008;66(1):10–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Lehtovirta P, Viinikka L, Ylikorkala O. Comparison between squamous cell carcinoma-associated antigen and CA-125 in patients with carcinoma of the cervix. Gynecol Oncol. 1990;37(2):276–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Borras G, Molina R, Xercavins J, Ballesta A, Iglesias J. Tumor antigens CA 19.9, CA 125, and CEA in carcinoma of the uterine cervix. Gynecol Oncol. 1995;57(2):205–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Battaglia F, Scambia G, Panici PB, Castelli M, Ferrandina G, Foti E, et al. Immunosuppressive acidic protein (IAP) and squamous cell carcinoma antigen (SCC) in patients with cervical cancer. Gynecol Oncol. 1994;53(2):176–82.PubMedCrossRefGoogle Scholar
  108. 108.
    Mathur SP, Mathur RS, Gray EA, Lane D, Underwood PG, Kohler M, et al. Serum vascular endothelial growth factor C (VEGF-C) as a specific biomarker for advanced cervical cancer: relationship to insulin-like growth factor II (IGF-II), IGF binding protein 3 (IGF-BP3) and VEGF-A [corrected]. Gynecol Oncol. 2005;98(3):467–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Jia W, Wu Y, Zhang Q, Gao GE, Zhang C, Xiang Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Mol Clin Oncol. 2015;3(4):851–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical cancer markers: epigenetics and microRNAs. Lab Med. 2018;49(2):97–111.PubMedCrossRefGoogle Scholar
  111. 111.
    Dong J, Su M, Chang W, Zhang K, Wu S, Xu T. Long non-coding RNAs on the stage of cervical cancer (Review). Oncol Rep. 2017;38(4):1923–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuyuki Chiyoda
    • 1
    Email author
  • Ai Dozen
    • 1
  • Keiko Saotome
    • 1
  • Yoshiko Nanki
    • 1
  • Daisuke Aoki
    • 1
  1. 1.Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan

Personalised recommendations