Advertisement

Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl

  • Shunhe WangEmail author
  • Pei Chen
  • Hui Dang
Chapter

Abstract

γ-Aminobutyric acid (GABA), or γ-ammonia butyric acid, is a kind of nonprotein amino acid which widely exists in vegetables and animals. It exists in the seeds, roots, and tissue fluid of many plants, such as Glycine L., Panax, herbal, and in animals almost exclusively present in nervous tissues. The content of GABA in brain tissue is 0.1~0.6mg/g, and immunology research show that substantia nigra contain the highest concentration of GABA (Krajnc et al. 1996). Meanwhile GABA is also present in microorganisms, such as yeast, Lactobacillus, and Escherichia coli.

References

  1. Ai M (1984) Oxidation of methyl ethyl ketone to diacetyl on V2O5-P2O5 catalysts. J Catal 89:413–421CrossRefGoogle Scholar
  2. Antonaccio MJ, Taylor DG (1977) Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anesthetized cats. Eur J Pharmacol 46:283–287CrossRefGoogle Scholar
  3. Awapara J, Landua AJ, Fuerst R et al (1950) Free gamma-aminobutyric acid in brain. J Biol Chem 187:35–39PubMedGoogle Scholar
  4. Aymes F, Monnet C, Corrieu G (1999) Effect of alpha-acetolactate decarboxylase inactivation on alpha-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar. Diacetylactis. J Biosci Bioeng 87:87–92CrossRefGoogle Scholar
  5. Bartowsky EJ, Henschke PA (2004) The‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int J Food Microbiol 96:235–252CrossRefGoogle Scholar
  6. Benson KH, Godon JJ, Renault P et al (1996) Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45:107–111CrossRefGoogle Scholar
  7. Bian Shuling, Zhang Wei, Zhu Hui et al (2002) Effect of γ-aminobutyric acid on the sperm acrosin activity. Natl J Androl 8:326–328Google Scholar
  8. Borts IH (1963) Dairy bacteriology. Am J Public Health Nations Health 200:529Google Scholar
  9. Boumerdassi H, Monnet C, Desmazeaud M et al (1997) Isolation and properties of Lactococcus lactis subsp. lactis biovar. Diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Appl Environ Microbiol 63:2293–2299PubMedPubMedCentralGoogle Scholar
  10. Cao Jiaxuan, Li Yuping, Xiong Xiangyuan et al (2008) Applications of γ-aminobutyric acid in functional foods. J Hebei Agric Sci 12:52–54Google Scholar
  11. Chen Lilong, Jiang Qingyan, Xiao Shi (2010) Biological function of γ-aminobutyric acid and its application as a novel feed additive. Feed Ind 31:1–3Google Scholar
  12. Cocaign-Bousquet M, Garrigues C, Loubiere P et al (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Van Leeuwenhoek 70:253–267CrossRefGoogle Scholar
  13. Cogan TM, O’Dowd M, Mellerick D (1981) Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Appl Environ Microbiol 41:1–8PubMedPubMedCentralGoogle Scholar
  14. Curic M, Richelieu MD, Henriksen CM et al (1999) Glucose/citrate cometabolism in Lactococcus lactis subsp. lactis biovar. Diacetylactis with impaired α-acetolactate decarboxylase. Metab Eng 1:291–298CrossRefGoogle Scholar
  15. Dan Tong, Zhang Heping (2013) Classification, biosynthesis and their applications of bacteriocins produced from lactic acid Bacteria. Zhonggue Rupin Gongye 41:29–32Google Scholar
  16. Fan E, Huang J, Hu S et al (2012) Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann Microbiol 62:689–698CrossRefGoogle Scholar
  17. Felipe FLD, Kleerebezem M, Vos WMD et al (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808Google Scholar
  18. Cui Xiaojun, Jiang Bo, Feng Biao (2005) Optimization of fermentation conditions for GABA (γ-aminobutyric acid) production by lactobacillus SK005. Food Res Dev 26:64–69Google Scholar
  19. Garrigues C, Loubiere P, Lindley ND et al (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282CrossRefGoogle Scholar
  20. Gasson MJ, Benson K, Swindell S et al (1996) Metabolic engineering of the Lactococcus lactis diacetyl pathway. Dairy Sci Technol 76:33–40CrossRefGoogle Scholar
  21. Geng Jingzhang (2012) Research on use of gamma-amino butyric acid (GABA) in food industry. Beverage Ind 15:11–14Google Scholar
  22. Godon JJ, Delorme C, Bardowski J et al (1993) Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol 175:4383–4390CrossRefGoogle Scholar
  23. Goupil N, Corthier G, Ehrlich SD et al (1996) Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol 62:2636–2640PubMedPubMedCentralGoogle Scholar
  24. Guo Zheng (1998) Research of Butanedione synthesis technology. Zhejiang Chem Ind 2:22–23Google Scholar
  25. Han Guangdian (1978) Handbook of organic preparation chemistry. Chemical Industry Press, Bei JingGoogle Scholar
  26. Hayakawa K, Kimura M, Kasaha K et al (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92:411–417CrossRefGoogle Scholar
  27. He Xipu, Zhang Min, Li Junfang et al (2007) The physiological function of γ -aminobutyric acid and the general research about γ -aminobutyric acid. J Guangxi Univ Nat Sci Ed 32:464–466Google Scholar
  28. Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14:467–494CrossRefGoogle Scholar
  29. Hua Chaoli, Zhao Zheng (2004) Studies on a nes ketone flavor yogurt co-fermented by Lactobacillus helveticus and Streptococcus diacetylactis. Zhonggue Rupin Gongye 32:17–20Google Scholar
  30. Huang YH, Zheng HF, Liu XL, Wang X et al (2005) Studies of the variation of GABA and Glu in Gabaron tea process. Food Sci 26:117–120Google Scholar
  31. Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178CrossRefGoogle Scholar
  32. Hugenholtz J, Kleerebezem M, Starrenburg M et al (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114CrossRefGoogle Scholar
  33. Jay JM, Loessner MJ, Golden DA (1992) Modern food microbiology. Chapman & Hall, New YorkCrossRefGoogle Scholar
  34. Ji Linli (2008) The screening and identification of LAB strains isolated from traditional dairy products with γ-amino butyric acid producing and optimizing their fermentation conditions. Inner Mongolia agricultural university, Hu He Hao TeGoogle Scholar
  35. Jordan KN, Cogan TM (1988) Production of acetolactate by Streptococcus diacetylactis and Leuconostoc spp. J Dairy Res 55:227–238CrossRefGoogle Scholar
  36. Kazami D, Ogura N, Fukuchi T et al (2002) Antihypertensive effect of Japanese taste seasoning containing γ-amino butyric acid on mildly hypertensive and high-normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi 49:409–415CrossRefGoogle Scholar
  37. Komatsuzaki N, Shima J, Kawamoto S et al (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504CrossRefGoogle Scholar
  38. Krajnc D, Neff N, Hadjiconstantinou M (1996) Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 707:134–137CrossRefGoogle Scholar
  39. Krnjević K, Schwartz S (1966) Is gamma-aminobutyric acid an inhibitory transmitter? Nature 211:1372–1374CrossRefGoogle Scholar
  40. Levata-Jovanovic M, Sandine WE (1996) Citrate utilization and diacetyl production by various strains of Leuconostoc mesenteroides ssp. Cremoris 1. J Dairy Sci 79:1928–1935CrossRefGoogle Scholar
  41. Leventhal AG, Wang Y, Pu M et al (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815CrossRefGoogle Scholar
  42. Liu Fang, Wang Yutang, Huo Guicheng (2006) Screening and identification of S. Thermophiles producing diacetyl. J Dairy Sci Technol 29:272–275Google Scholar
  43. Ma Guihua (1989) Lactobacillus and human health. Food Herald:10–12Google Scholar
  44. Marth EH, Steele JL (1998) Applied dairy microbiology. Marcel Dekker, New YorkGoogle Scholar
  45. Marugg JD, Goelling D, Stahl U et al (1994) Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar. Diacetylactis. Appl Environ Microbiol 60:1390–1394PubMedPubMedCentralGoogle Scholar
  46. Mcsweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80:293–324CrossRefGoogle Scholar
  47. Meng Xiangchen (2009) Lactic acid Bacteria and dairy starter culture. Science Press, Bei JingGoogle Scholar
  48. Mombereau C, Kaupmann K, Froestl W et al (2004) Genetic and pharmacological evidence of a role for GABA (B) receptors in the modulation of anxiety-and antidepressant-like behavior. Neuropsychopharmacology 29:1050–1062CrossRefGoogle Scholar
  49. Monnet C, Corrieu G (2007) Selection and properties of alpha-acetolactate decarboxylase-deficient spontaneous mutants of Streptococcus thermophilus. Food Microbiol 24:601–606CrossRefGoogle Scholar
  50. Monnet C, Schmilt P, Divies C (1994) Diacetyl production in milk by an α-acetolactic acid accumulating strain of Lactococcus lactis ssp. lactis biovar. Diacetylactis. J Dairy Sci 77:2916–2924CrossRefGoogle Scholar
  51. Monnet C, Schmitt P, Divies C (1997) Development and use of a screening procedure for production of alpha-acetolactate by Lactococcus lactis subsp. lactis biovar. Diacetylactis strains. Appl Environ Microbiol 63:793–795PubMedPubMedCentralGoogle Scholar
  52. Murashima YL, Kato T (1986) Distribution of gamma-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct. J Neurochem 46:166–172CrossRefGoogle Scholar
  53. Nomura M, Kimoto H, Someya Y et al (1998) Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci 81:1486–1491CrossRefGoogle Scholar
  54. O’Sullivan SM, Condon S, Cogan TM et al (2001) Purification and characterisation of acetolactate decarboxylase from Leuconostoc lactis NCW1. FEMS Microbiol Lett 194:245–249CrossRefGoogle Scholar
  55. Okada T, Sugishita T, Murakami T et al (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. J Jpn Soc Food Sci Technol Nippon Shokuhin Kagaku Kogaku Kaishi 47:596–560CrossRefGoogle Scholar
  56. Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63PubMedGoogle Scholar
  57. Rodríguez A, Martínez B, Suárez J (2012) Dairy starter cultures. CRC Press, Boca RatonCrossRefGoogle Scholar
  58. Roldan ER, Murase T, Shi QX (1994) Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266:1578–1581CrossRefGoogle Scholar
  59. Sawai Y, Yamaguchi Y, Miyama D et al (2001) Cycling treatment of anaerobic and aerobic incubation increases the content of gamma-aminobutyric acid in tea shoots. Amino Acids 20:331–334CrossRefGoogle Scholar
  60. Seitz EW, Sandine WE, Elliker PR et al (1963) Distribution of diacetyl reductase among bacteria. J Dairy Sci 46:186–189CrossRefGoogle Scholar
  61. Siragusa S, Angelis MD, Cagno RD et al (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290CrossRefGoogle Scholar
  62. Snoep JL, Mj TDM, Starrenburg MJ et al (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis biovar. Diacetylactis. J Bacteriol 174:4838–4841CrossRefGoogle Scholar
  63. Song Huanlu (2002) The primary study on Diacetyl biosynthesis by lactic acid Bacteria. Food Ferment Ind 28:47–50Google Scholar
  64. Song Wei, Ma Xia, Zhang Bailin (2008) Physiological benefits and fortifications of γ-Aminobutyric Acid in dairy products. J Dairy Sci Technol 31:297–302Google Scholar
  65. Speckman RA, Collins EB (1968) Separation of diacetyl, acetoin, and 2, 3-butylene glycol by salting-out chromatography. Anal Biochem 22:154–160CrossRefGoogle Scholar
  66. Takahashi H, Tiba M, Yamazaki T et al (1959) On the site of action of gamma-aminobutyric acid on blood pressure. Jpn J Physiol 8:378–390CrossRefGoogle Scholar
  67. Udenfriend S (1950) Identification of gamma-aminobutyric acid in brain by the isotope derivative method. J Biol Chem 187:65–69PubMedGoogle Scholar
  68. Usuki S, Ito Y, Morikawa K et al (2007) Effect of pre-germinated brown rice intake on diabetic neuropathy in streptozotocin- induced diabetic rats. Nutr Metab 4:25CrossRefGoogle Scholar
  69. Wang Zhen (1992) Dictionary of chemical technology. Chemical Industry Press, Bei JingGoogle Scholar
  70. Xia Jiang (2006) Breeding of γ-aminobutyric acid-producing lactobacillus and optimization of fermentation conditions. Zhejiang University, Hang ZhouGoogle Scholar
  71. Xia Jiang, Mei Lehe, Huang Jun et al (2006) Screening and mutagenesis of Lactobacillus brevis for biosynthesis of γ-aminobutyric acid. J Nucl Agric Sci 20:379–382Google Scholar
  72. Xian Qianlong (2013) Selection of γ-aminobutyric acid-producing lactic acid Bacteria and the development of functional yoghurt. Guangxi University of Technology, Liu ZhouGoogle Scholar
  73. Xie Haiyan, Yin Dulin (2000) Catalytic oxidation of Butan-2-one to Diacetyl. Hunan Chem Ind 30:22–23Google Scholar
  74. Xu Jianjun, Jiang Bo, Xu Shiying (2002) Screening of lactic acid Bacteria for biosynthesis of γ-amino butyric acid. Food Sci Technol:7–8Google Scholar
  75. Yang Jiebin, Guo Xinghua, Zhang Chi et al (1996) Lactic acid Bacteria: biological basis and application. China Light Industry Press, Bei JingGoogle Scholar
  76. Yang Lijie, Wang Junhu (2004) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Zhonggue Rupin Gongye 32:24–29Google Scholar
  77. Yang LJ, Wang JH (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62:2641–2643Google Scholar
  78. Yu Peng, Zhang Lanwei, Xu Qian et al (2006) Screening mutagenized Lactococcus Lactis subsp. lactis Biovar Diacetyl strains overproducing Diacetyl. J Dairy Sci Technol 29:218–220Google Scholar
  79. Zheng Yingfu, Han Zhenrong, Zhao Chunhai (2005) A review on improving diacetyl formation in Lactococcus lactis. China Biotechnol 25:186–189Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina
  2. 2.Shaanxi Radio & TV UniversityXi’anChina
  3. 3.Shaanxi Normal UniversityXi’anChina

Personalised recommendations