Advertisement

Legumes for Carbon and Nitrogen Cycling: An Organic Approach

  • Sandeep Kumar
  • Ram Swaroop MeenaEmail author
  • Rahul Datta
  • Sunil Kumar Verma
  • Gulab Singh Yadav
  • Gourisankar Pradhan
  • Ali Molaei
  • G. K. M. Mustafizur Rahman
  • H. A. Mashuk
Chapter

Abstract

Food security, land degradation, eliminating the threats of climate change, soil sustainability, and crop productivity are the critical challenges in the coming years. Therefore, the sustainability of the agricultural production system is becoming a central component in enhancing food security and environmental sustainability. Legume crops could play a significant role in this perspective by carrying out numerous services in keeping with principles of sustainability. Incorporating legume crops into crop rotation is essential for implementing and integrating the conservation and improvement of soil health, quality, and fertility with diverse aspects of crop and livestock production into the natural farming systems. The source of nutrition to subsequent crops to maintain a continuous nitrogen (N) supply chain greatly varies with regard to the inclusion of legumes in the cropping system. The crop rotation, including pigeon pea (Cajanus cajan), improved the total N content in the uppermost soil strata by around 100 μg g−1 soils, in comparison with 25 μg g−1 soils in cropping systems without inclusion of grain legume in the crop rotation. Carefully planned diverse crop rotations diminish the prevalence of insect pests, pathogens, diseases, and weeds. This potential for reducing the attacks by insect pests, diseases, weeds, that positively shape the soil fertility, as a result were reported to boost successive cereal production by 15% to 25%. By means of the complex interactions among the various crop production inputs, the conservation and improvement of soil fertility in crop rotation depends on the long-term integrated approach, in spite of conventional agriculture.

Keywords

Crop productivity Crop rotation Legumes Nitrogen fixation Organic agriculture Soil fertility 

Abbreviations

BNFs

Biological nitrogen fixations

C

Carbon

CO2

Carbon dioxide

GHGs

Greenhouse gases

IPCC

Intergovernmental panel on climate change

K

Potassium

N

Nitrogen

P

Phosphorus

SOC

Soil organic carbon

SOM

Soil organic matter

UN

United Nations

WUE

Water use efficiency

References

  1. Abawi GS, Widmer TL (2000) Impact of soil health management practices on soil borne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47CrossRefGoogle Scholar
  2. Aerts R, de Caluwe H (1999) N deposition effects on C dioxide and methane emissions from temperate peat land soils. Oikos 84(1):44–54CrossRefGoogle Scholar
  3. Agarwal V, Bolch T, Syed TH, Pieczonka T, Strozzi T, Nagaich R (2017) Area and mass changes of Siachen Glacier (East Karakoram). J Glaciol 63(237):148–163CrossRefGoogle Scholar
  4. Albrecht R, Guddat C (2004) Welchen Wert haben Körnerleguminosen in der Fruchtfolge. Landesanstalt für Landwirtschaft, ThüringerGoogle Scholar
  5. Alpmann D, Braun J, Schäfer BC (2013) Fruchtfolgen zielgerichtet auflockern. Land For 13:26–28Google Scholar
  6. Altieri MA (1995) Agroecology: the science of sustainable agriculture. Intermediate Technology Publications, LondonGoogle Scholar
  7. Anderson RL (2007) Managing weeds with a dualistic approach of prevention and control. A review. Agron Sustain Dev 27:13–18CrossRefGoogle Scholar
  8. Angers DA, Mehuys GR (1988) Effects of cropping on macro-aggregation of a marine-clay soil. Can J Soil Sci 68:723–732CrossRefGoogle Scholar
  9. Angus JF, Bolger TP, Kirkegaard JA, Peoples MB (2006) N mineralization in relation to previous crops and pastures. Aust J Soil Res 44:355–365CrossRefGoogle Scholar
  10. Anil L, Park J, Philips RH, Miller FA (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference UK. Grass Forage Sci 53:301–317CrossRefGoogle Scholar
  11. Annetts JE, Audsley E (2002) Multiple objective linear programming for environmental farm planning. J Oper Res Soc 53:933–943CrossRefGoogle Scholar
  12. Arhara J, Ohwaki Y (1989) Estimation of available phosphorus in vertisol and alfisol in view of root effects on rhizosphere soil. In: XI Colloquium. Academic Publishers, WageningenGoogle Scholar
  13. Asefa T, Tanner DG, Bennie ATP (2002) Effect of stubble management, tillage and cropping sequence on the severity of take-all and eyespot diseases of wheat. Afr Crop Sci J 10:67–79Google Scholar
  14. Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441Google Scholar
  15. Asif M, Rooney LW, Ali R, Riaz MN (2013) Application and opportunities of pulses in food system: a review. Crit Rev Food Sci Nutr 53:1168–1179CrossRefGoogle Scholar
  16. Avola G, Tuttobene R, Gresta F, Abbate V (2008) Weed control strategies for grain legumes. Agron Sustain Dev 28:389–395CrossRefGoogle Scholar
  17. Bagayoko M, Buerkert A, Lung G, Bationo A, Rornheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral N, mycorrhizae and nematodes. Plant Soil 218:103–116CrossRefGoogle Scholar
  18. Bahadur S, Verma SK, Prasad SK, Madane AJ, Maurya SP, Gaurav VVK, Sihag SK (2015) Eco-friendly weed management for sustainable crop production – a review. J Crop Weed 11(1):181–189Google Scholar
  19. Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci Soc Am J 52:118–124CrossRefGoogle Scholar
  20. Beattie B, Thompson S, Boehlje M (1974) Product complementarity in production: the by-product case. South J Agric Econ 7:161–165Google Scholar
  21. Belel MD, Halim RA, Rafii MY, Saud HM (2014) Intercropping of corn with some selected legumes for improved forage production. J Agric Sci 6:3Google Scholar
  22. Benson GO (1985) Why the reduced yields when corn follows corn and possible management responses? In: Wilkinson D (ed) Proceeding of the 40th corn sorghum research conference, Chicago. American Seed Trade Association, Washington, DC, pp 161–174Google Scholar
  23. Berner A, Hildermann I, Fließbach A, Pfiffner L, Niggli U, Mäder P (2008) Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res 101:89–96CrossRefGoogle Scholar
  24. Biederbeck VO, Campbell CA, Rasiah V, Zentner RP, Wen G (1998) Soil quality attributes as influenced by annual legumes used as green manure. Soil Biol Biochem 30:1177–l185CrossRefGoogle Scholar
  25. Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155CrossRefGoogle Scholar
  26. Brandsæter LO, Riley H (1999) Plant residues for weed management in vegetables. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. Danish Research Centre for Organic Farming, FoulumGoogle Scholar
  27. Brooks SA (2011) Influences from long-term crop rotation, soil tillage, and fertility on the severity of rice grain smuts. Plant Dis 95:990–996CrossRefGoogle Scholar
  28. Bruns HA, Pettigrew WT, Meredith WR, Stetina SR (2007) Corn yields benefit in rotations with cotton. Online. Crop Management.  https://doi.org/10.1094/CM-2007-0424-01-RS CrossRefGoogle Scholar
  29. Bues A, Preissel S, Reckling M, Zander P, Kuhlman T, Topp K, Watson CA, Lindström K, Stoddard FL, Murphy-Bokern D (2013) The environmental role of protein crops in the new Common Agricultural Policy. European Parliament, Directorate General for Internal Policies, Policy Department B: Structural and Cohesion Policies, Agricultural and Rural Development IP/B/AGRI/IC/2012-067. 112 ppGoogle Scholar
  30. Buhler DD (1995) Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci 35:1247–1258CrossRefGoogle Scholar
  31. Buhler DD, Kohler KA, Thompson RL (2001) Weed seed bank dynamics during a five-year crop rotation. Weed Technol 15:170–176CrossRefGoogle Scholar
  32. Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11(4):309–326CrossRefGoogle Scholar
  33. Bumb B, Baanante C (1996) The role of fertilizer in sustaining food security and protecting the environment to 2020. Vision 2020 discussion paper 17. IFPRI, Washington, DCGoogle Scholar
  34. Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res.  https://doi.org/10.1071/SR17001 CrossRefGoogle Scholar
  35. Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO3-deposition reduces soil respiration in northern hardwood forests. Glob Chang Biol 10:1080–1091CrossRefGoogle Scholar
  36. Buyanovsky GA, Aslam M, Wagner GH (1994) Carbon turnover in soil physical fractions. Soil Sci Soc Am J 58:1167–1173CrossRefGoogle Scholar
  37. Cambardella CA, Elliot ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783CrossRefGoogle Scholar
  38. Cambardella CA, Elliot ETC (1994) N dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58:123–130CrossRefGoogle Scholar
  39. Campbell CA, Zentner RP, Selles F, Biederbeck VO, Leyshon AJ (1992) Comparative effects of grain lentil-wheat and monoculture wheat on crop production, N economy and N fertility in a Brown Chemozem. Can J Plant Sci 72(109):1–1107Google Scholar
  40. Canveri M, Putnam DH (2007) Managing depleted alfalfa stands: over-seeding and other options. In: Summers CG, Putnam DH (eds) Irrigated alfalfa management for Mediterranean and Desert zones. University of California, Agriculture and Natural Resources, OaklandGoogle Scholar
  41. Capinera JL (2002) North American vegetable pests: the pattern of invasion. Am Entomol 48:20–39CrossRefGoogle Scholar
  42. Cardina J, Herms CP, Doohan DJ (2002) Crop rotation and tillage systems effects on weed seedbanks. Weed Sci 50:448–460CrossRefGoogle Scholar
  43. Carofa M, Tourdonneta S, Saulasb P, Flocha DL, Roger-Estradea J (2007) Under sowing wheat with different living mulches in a no till system. II. Competition for light and N. Agron Sustain Dev 27:357–365CrossRefGoogle Scholar
  44. Carsky RJ, Singh BB, Oyewole B (2001) Contribution of early season cowpea to late season maize in the savanna zone of West Africa. Biol Agric Hortic 18:303–315CrossRefGoogle Scholar
  45. Cederberg C, Flysjö A (2004) Environmental assessment of future pig farming systems – Quantifications of three scenarios from the FOOD 21 Synthesis Work. Swedish Institute for Food and Biotechnology, SIK-rapport Nr 723Google Scholar
  46. Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust J Agric Res 49:303–316CrossRefGoogle Scholar
  47. Chan KY, Heenan DP (1991) Differences in surface soil aggregation under six different crops. Aust J Exp Agric 31:683–686CrossRefGoogle Scholar
  48. Mohler C, Johnson SE (2009) Crop rotation on organic farms: a planning manual, NRAES 177. NRAES, IthacaGoogle Scholar
  49. Charles R, Vuilloud P (2001) Pois protéagineux et azote dans la rotation. Rev Suisse Agric 33:365–370Google Scholar
  50. Chicouen DE (2007) Mechanical destruction of weeds, a review. Agron Sustain Dev 27:19–27CrossRefGoogle Scholar
  51. Clark MS, Horwath WR, Shennan C, Scow KM (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron J 90:662–671CrossRefGoogle Scholar
  52. Conway GR, Pretty JN (1991) Unwelcome harvest: agriculture and pollution. Earthscan Publications Ltd., LondonGoogle Scholar
  53. Cook RJ (1984) Root health: importance and relationship to farming practices. In: Bezdicek DF (ed) Organic farming, American Society of Agronomy Special Publication No 46. Madison, Wisconsin, pp 111–127Google Scholar
  54. Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208CrossRefGoogle Scholar
  55. Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66CrossRefGoogle Scholar
  56. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of N: ecological trade-offs and human needs. Agric Ecosyst Environ 102:279–297CrossRefGoogle Scholar
  57. Dabney SM, Delgado JA, Reeves DW (2001) Using winter cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32:1221–1250CrossRefGoogle Scholar
  58. Dachler M, Köchl A (2003) Der Einfluss von Fruchtfolge, Vorfrucht, Stickstoffdüngung und Einarbeitung der Ernterückstände auf Ertrag und Rohproteingehalt von Winterweizen und nachfolgender Sommergerste. Die Bodenkultur 54:23–34Google Scholar
  59. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App Nat Sci 7(1):52–57CrossRefGoogle Scholar
  60. Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302CrossRefGoogle Scholar
  61. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163CrossRefGoogle Scholar
  62. Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017c) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402CrossRefGoogle Scholar
  63. Datta R, Vranová V, Pavelka M, Rejšek K, Formánek P (2014) Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int Agrophys 28(1):119–124CrossRefGoogle Scholar
  64. Davis AS, Liebman M (2003) Cropping system effects on giant foxtail (Setaria faberi) demography: I. Green manure and tillage timing. Weed Sci 51:919–929CrossRefGoogle Scholar
  65. Dimitrios B, Panyiota P, Aristidis K, Aspasia E (2010) Weed suppression effects of maize-vegetable inorganic farming. Int J Pest Manag 56:173–181CrossRefGoogle Scholar
  66. Dogliotti S, Rossing WAH, van Ittersum MK (2003) ROTAT, a tool for systematically generating crop rotations. Eur J Agron 19(2):239–250CrossRefGoogle Scholar
  67. Drinkwater LE (1999) Using plant species composition to restore soil quality and ecosystem function. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  68. Drinkwater LE, Schipanski M, Snapp S, Jackson LE (2017) Ecologically based nutrient management. In: Agricultural systems. Academic, Cambridge, MA, pp 203–257.  https://doi.org/10.1016/b978-0-12-802070-8.00007-4 CrossRefGoogle Scholar
  69. Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and N losses. Nature 396:262–265CrossRefGoogle Scholar
  70. Duan S, Zhang S, Huang H (2000) Transport of dissolved inorganic N from the major rivers to estuaries in China. Nutr Cycl Agroecosyst 57:13–22CrossRefGoogle Scholar
  71. Duranti M, Gius C (1997) Legume seeds: protein content and nutritional value. J Field Crop Res 53:31–45CrossRefGoogle Scholar
  72. Edwards JH, Thrulow DL, Eason JT (1987) Influence of tillage and crop rotation on yields of corn, soybean, and wheat. Agron J 80:76–80CrossRefGoogle Scholar
  73. Egle K, Romer W, Keller H (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23:511–518CrossRefGoogle Scholar
  74. Eriksen J, Askegaard M, Olesen JE, Thorup-Kristensen K (1999) The sulphur balance of organic crop rotations in Denmark. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  75. Espinoza S, Ovalle C, Zagal E, Matus I, Tay J, Peoples MB et al (2012) Contribution of legumes to wheat productivity in Mediterranean environments of central Chile. Field Crop Res 133:150–159CrossRefGoogle Scholar
  76. Fliebach A, Oberholzer HR, Gunst L, Madar P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284CrossRefGoogle Scholar
  77. Fogg K (1988) The effect of added N on the rate of organic matter decomposition. Biol Rev 63:433–472CrossRefGoogle Scholar
  78. Fragstein P, von Schmidt H (1999) External N sources in an organic stockless crop rotation – useful or useless additives? In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  79. Frame J, Charlton JFL, Laidlaw AS (1998) Temperate forage legumes. CAB International, Wallingford, 327 pGoogle Scholar
  80. Francis CA, Clegg MD (1990) Crop rotations in sustainable production systems. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds) Sustainable agricultural systems, Soil and water conservation society. CRC Press, New York, p 130Google Scholar
  81. Frick B, Johnson E (2004) Crop rotations for organic systems. Scott Research Farm, Organic Agriculture Centre of Canada, TruroGoogle Scholar
  82. Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021CrossRefGoogle Scholar
  83. Gabriel D, Sait SM et al (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13(7):858–869CrossRefGoogle Scholar
  84. Gabriel D, Tscharntke T (2007) Insect pollinated plants benefit from organic farming. Agric Ecosyst Environ 118:43–48CrossRefGoogle Scholar
  85. Gallaher RN, McSorley R (1993) Population densities of Meloidogyne incognita and other nematodes following seven cultivars of cowpea. Nematropica 23:21–26Google Scholar
  86. Gallardo-Lara F, Nogales R (1987) Effect of the application of town refuse compost on the soil-plant system: a review. Biol Wastes 19:35–62CrossRefGoogle Scholar
  87. Ghanbari A, Dahmardeh M, Siahsar BA, Ramroudi M (2010) Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in and environment. J Food Agric Environ 8:102–108Google Scholar
  88. Giambalvo D, Stringi L, Durante G, Amato G, Frenda AS (2004) N efficiency component analysis in wheat under rainfed Mediterranean conditions: effects of crop rotation and N fertilization. Options Méditerr Serie A 60:169–173Google Scholar
  89. Gikonyo EW, Smithson PC (2003) Effects of farmyard manure, potassium and their combinations on maize yields in the high and medium rainfall areas of Kenya. In: Bationo A (ed) Managing nutrient cycles to sustain soil fertility in Sub-Sahara Africa. Academy Science Publishers (ASP), Nairobi, pp 137–149Google Scholar
  90. Giller KE, Cadisch G (1995) Future benefits from biological N fixation in agriculture: an ecological approach. Plant Soil 174:255–277CrossRefGoogle Scholar
  91. Gooding MJ, Kasyanova E, Ruske R, Hauggaard-Nielsen H, Jensen ES, Dahlmann C, von Fragstein P, Dibet A, Corre-Hellou G, Crozat Y, Pristeri A, Romeo M, Monti M, Launay M (2007) Intercropping with pulses to concentrate N and sulphur in wheat. J Agric Sci 14:469–479CrossRefGoogle Scholar
  92. Grace PR, Oades JM, Keith H, Hancock TW (1995) Trends in wheat yields and soil organic C in the permanent rotation trial at the Waite Agricultural Institute, South Australia. Aust J Exp Agric 35:857–864CrossRefGoogle Scholar
  93. Green CJ, Blackmer AM, Horton R (1995) N effects on conservation of C during corn residue decomposition in soil. Soil Sci Soc Am J 59:453–459CrossRefGoogle Scholar
  94. Greenland DJ (1985) N and food production in the tropics: contributions from fertilizer N and biological N fixation. In: Kang BT, van der Heide J (eds) N management in farming systems in humid and subhumid tropics. Institute for Soil Fertility International Institute of Tropical Agriculture, Haren, pp 9–38Google Scholar
  95. Hald AB (1999) Weed vegetation (wild flora) of long established organic versus conventional cereal fields in Denmark. Ann Appl Biol 134:307–314CrossRefGoogle Scholar
  96. Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395CrossRefGoogle Scholar
  97. Hamid K (2011) Crop rotations for managing soil-borne plant diseases. Afr J Food Sci Technol 2(1):001–009Google Scholar
  98. Hamilton PA, Helsel DR (1995) Effects of agriculture on ground-water quality in five regions of the United States. Ground Water 33(2):217–226CrossRefGoogle Scholar
  99. Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop Res 70:101–109CrossRefGoogle Scholar
  100. Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250CrossRefGoogle Scholar
  101. Hausfather Z (2017) Analysis: Why scientists think 100% of global warming is due to humans. Global temperature: CarbonBrief Clear on Climate, December, 13, 2017. https://www.carbonbrief.org/analysis-why-scientists-think-100-of-global-warming-is-due-to-humans
  102. Hayat R, Ali S (2010) N fixation of legumes and yield of wheat under legumes-wheat rotation in Pothwar. Pak J Bot 42:2317–2326Google Scholar
  103. Henao J, Baanante C (1999) Nutrient depletion in the agricultural soils of Africa. 20r20 Vision Brief 62. IFPRI, Washington, DCGoogle Scholar
  104. Hernanz JL, Sanchez-Giron V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133:114–122CrossRefGoogle Scholar
  105. Hoyt GD, Hargrove WH (1986) Legume cover crops for improving crop and soil management in the southern United States. Hortic Sci 21:397–402Google Scholar
  106. James B, Atcha-Ahowe C, Godonou I, Baimey H, Goergen H, Sikirou R et al (2010) Integrated pest management in vegetable production: a guide for extension workers in West Africa. International Institute of Tropical Agriculture (IITA). Ibadan, Nigeria 2010:1–120Google Scholar
  107. Jangir CK, Kumar S, Lakhran H, Meena RS (2017) Towards mitigating malnutrition in pulses through biofortification. Trends Biosci 10(17):2999–3002Google Scholar
  108. Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcell Dekker, New York, pp 415–471Google Scholar
  109. Jensen ES (2006) Grain legume functions in crop rotations. In: Proceedings of the AEP workshop (ed) Grain legumes and the environment: how to assess benefits and impacts. AEP, Zürich, pp 49–54Google Scholar
  110. Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crop Res 115:203–216CrossRefGoogle Scholar
  111. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2011) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries – a review. Agron Sustain Dev 32:329–364CrossRefGoogle Scholar
  112. Jezierny D, Mosenthin R, Bauer E (2010) The use of grain legumes as a protein source in pig nutrition: a review. Anim Feed Sci Technol 157:111–128CrossRefGoogle Scholar
  113. Jones S, Harris PM (1999) Measurement of N partitioning within different organic systems incorporating strip intercropping, sheep and crop rotation. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  114. Jordan VWL, Hutcheon JA, Donaldson GV, Farmer DP (1997) Research into and development of integrated farming systems for less-intensive arable crop production: experimental progress (1989–1994) and commercial implementation. Agric Ecosyst Environ 64:141–148CrossRefGoogle Scholar
  115. Kahiluoto H, Vestberg M (1999) Impact of cropping system on mycorrhiza. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  116. Kakraliya SK, Jat RD, Kumar S, Choudhary KK, Prakash J, Singh LK (2017) Integrated nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in Indo-Gangatic plains of India. Int J Curr Microbiol App Sci 6(3):152–163CrossRefGoogle Scholar
  117. Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) N and legumes: a meta-analysis. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, SingaporeGoogle Scholar
  118. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Long-term tillage effects on soil quality. Soil Tillage Res 32:313–327CrossRefGoogle Scholar
  119. Khallel R, Jones TE, Knepp AJ, Mann FM, Myers DA, Rogers PM, Serne RJ, Wood MI (2000) Modeling data package for S-SX Field Investigation Report (FIR), RPP-6296, Rev. 0. CH2M Hill Hanford Group, Inc., RichlandGoogle Scholar
  120. Kiiya WW, Mureithi JG, Kiama JM (2006) Improving production of Irish potato (Solanum tuberosum, L.) in Kenya: the use of green manure legumes for soil fertility improvement. In: Mureithi JG et al (eds) Development and up scaling of green manure legumes technologies in Kenya. KARI, NairobiGoogle Scholar
  121. Kimber RBE, Paull JG (2011) Identification and inheritance of resistance to cercospera leaf spot (Cercospora zonata) in germplasm of faba bean (Vicia faba). Euphytica 117:419–429CrossRefGoogle Scholar
  122. Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195CrossRefGoogle Scholar
  123. Knudsen IMB, Debosz K, Hockenhull J, Jensen DF, Elmholt S (1995) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72CrossRefGoogle Scholar
  124. Koocheki A, Nassiri M, Alimoradi L, Ghorbani R (2009) Effect of cropping systems and crop rotations on weeds. Agron Sustain Dev 29:401–408CrossRefGoogle Scholar
  125. Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233CrossRefGoogle Scholar
  126. Kumar S, Karaliya SK, Chaudhary S (2017a) Precision farming technologies towards enhancing productivity and sustainability of rice-wheat cropping system. Int J Curr Microbiol App Sci 6(3):142–151CrossRefGoogle Scholar
  127. Kumar S, Lakhran H, Meena RS, Jangir CK (2017b) Current needs of sustainable food and forage production to eliminate food and forage insecurity under climate change era. Forage Res 43(3):165–173Google Scholar
  128. Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, Sabagh A-EL (2018) Role of legumes in soil carbon sequestration. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, SingaporeGoogle Scholar
  129. Kumar S, Sheoran S, Kakraliya SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Prog Res – An Int J 11(Special-IX):6243–6246Google Scholar
  130. LaFavre JS, Focht DD (1983) Conservation in soil of H2 liberated from N2 fixation by HUP nodules. Appl Environ Microbiol 46:304–311Google Scholar
  131. Lafond GP, Loeppky H, Derksen DA (1992) The effects of tillage systems and crop rotations on soil water conservation, seedling establishment and crop yield. Can J Plant Sci 72:103–115CrossRefGoogle Scholar
  132. Lakhran H, Kumar S, Bajiya R (2017) Crop diversification: an option for climate change resilience. Trends Biosci 10(2):516–518Google Scholar
  133. Lal R (2004) Soil C sequestration impacts on global climate change and food security. Science 304:1623–1626CrossRefGoogle Scholar
  134. Lal R, Kimble JM, Follett RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, ChelseaGoogle Scholar
  135. Lampkin N (1990) Organic farming. Farming Press Books, IpswichGoogle Scholar
  136. Lamprecht SC, Marasas WFO, Hardy MB, Calitz FJ (2006) Effect of crop rotation on crown rot and the incidence of Fusarium pseudograminearum on wheat in the Western Cape, South Africa. Australas Plant Pathol 35:419–426CrossRefGoogle Scholar
  137. Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol Biochem 40:1341–1351CrossRefGoogle Scholar
  138. Layek J et al (2018) Cereal+Legume intercropping: an option for improving productivity and sustaining soil health. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, SingaporeGoogle Scholar
  139. Leithold G, Huelsbergen KJ, Michel D, Schoenmeier H (1997) In: Diepenbrock W et al (eds) Umweltvertraegliche Pflanzenproduktion. Zeller Verlag, Osnabrueck, pp 43–54Google Scholar
  140. Lemaga BR, Kanzikwera R, Kakuhenzire J, Hakiza J, Manzi G (2001) Effect of crop rotation on bacterial wilt incidence and potato tuber yield. Afr Crop Sci J 9(1):257–266Google Scholar
  141. Lemke RL, Zhong Z, Campbell CA, Zentner R (2007) Can pulse crops play a role in mitigating greenhouse gases from north American agriculture? Agron J 99:1719–1725CrossRefGoogle Scholar
  142. Leslie AR, Cuperus GW (1993) Successful implementation of integrated pest management for agricultural crops, vol I, 1st edn. CRC Press, Boca Raton, pp 1–193Google Scholar
  143. Leteinturier B, Herman J, Longueville FD, Quintin L, Oger R (2006) Adaptation of a crop sequence indicator based on a land parcel management system. Agric Ecosyst Environ 112(4):324–334CrossRefGoogle Scholar
  144. Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low- external-input farming systems. Weed Res 40:27–47CrossRefGoogle Scholar
  145. Likoswe AA (1994) Pigeonpea agronomy annual report: Makoka Research Station. Zomba, ZombaGoogle Scholar
  146. Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410Google Scholar
  147. LMC International (2009) Evaluation of measures applied under the common agricultural policy to the protein crop sector, Main Report. LMC International, New York/Oxford/Kuala LumpurGoogle Scholar
  148. Loges R, Kaske A, Taube F (1999) DiN fixation and residue N of different managed legumes and N uptake of subsequent winter wheat. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  149. López-Bellido L, López-Bellido RJ, Castillo JE, López-Bellido FJ (2001) Effects if long-term tillage, crop rotation and N fertilisation on bread-making quality of hard red spring wheat. Field Crop Res 72:197–210CrossRefGoogle Scholar
  150. López-Bellido L, López-Bellido FJ, López-Bellido JE, Castillo (2003) Faba bean (Vicia faba L.) response to tillage and soil residual N in a continuous rotation with wheat (Triticum aestivum L.) under rainfed Mediterranean conditions, Agron J 95: 1253–1261Google Scholar
  151. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76CrossRefGoogle Scholar
  152. Lojkova L, Datta R, Sajna M, Marfo TD, Janous D, Pavelka M, Formanek P (2015) Limitation of proteolysis in soils of forests and other types of ecosystems by diffusion of substrate. In: Amino acids, vol 8. Springer, Wien, pp 1690–1691Google Scholar
  153. Luetke-Entrup N, Schneider M, Stemann G, Gröblinghoff FF et al (2006) Bewertung von neuen Systemen der Bodenbewirtschaftung in erweiterten Fruchtfolgen mit Körnerraps und Körnerleguminosen. Abschlussbericht über die Versuchsjahre 2001–2005, Fachhochschule Südwestfalen, Fachbereich Agrarwirtschaft, Soest (2006), pp. 215Google Scholar
  154. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741CrossRefGoogle Scholar
  155. Magdof F, Van Es H (2000) Building soils for better crops sustainable soil management. SARE Outreach Publications c/o International Fulfilment Corporation, BrentwoodGoogle Scholar
  156. Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2008) Mixing plant species in cropping systems: concepts, tools and models. A review. Agro Sust Dev 29:43–62CrossRefGoogle Scholar
  157. Marenco RA, Santos ÁMB (1999) Crop rotation reduces weed competition and increases chlorophyll concentration and yield of rice. Pesqui agropecu Bras 34(10):1881–1887CrossRefGoogle Scholar
  158. Marfo TD, Datta R, Lojkova L, Janous D, Pavelka M, Formanek P (2015) Limitation of activity of acid phosphomonoesterase in soils. In: Amino acids, vol 8. Springer, Wien, p 1691Google Scholar
  159. Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89CrossRefGoogle Scholar
  160. McCallum MH, Kirkegaard JA, Green T, Cresswell HP, Davies SL, Angus JF et al (2004) Improved subsoil macro-porosity following perennial pastures. Aust J Exp Agric 44:299–307CrossRefGoogle Scholar
  161. McIntire J, Fussel LK (1986) On-farm experiments with millet in Niger. III. Yields and economic analyses. ISC (ICRISAT Sahelian Center), NiameyGoogle Scholar
  162. McNeill AM, Fillery IRP (2008) Field measurement of lupin below ground N accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 302:297–316CrossRefGoogle Scholar
  163. McSorley R, Dickson DW, de Brito JA (1994) Host status of selected tropical rotation crops to four populations of root-knot nematodes. Nematropica 24:45–51Google Scholar
  164. McSorley R, Gallaher RN (1993) Effect of crop rotation and tillage on nematode densities in tropical corn. J Nematol 25:814–819Google Scholar
  165. Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018) Legume green manuring: an option for soil sustainability. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, SingaporeCrossRefGoogle Scholar
  166. Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718CrossRefGoogle Scholar
  167. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: A book review. J Clean Prod 112:1258–1260CrossRefGoogle Scholar
  168. Mielke LN, Schepers JS (1986) Plant response to topsoil thickness on an eroded loess soil. J Soil Water Conserv 41:59–63Google Scholar
  169. Mikkelsen G (1999) Analysing non-replicated data in cropping systems. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  170. Mitran T, Meena RS, Lal R, Layek J, Kumar S, Datta R (2018) Role of soil phosphorus on legume production. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, SingaporeGoogle Scholar
  171. Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31(4):499–505CrossRefGoogle Scholar
  172. Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663CrossRefGoogle Scholar
  173. Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and N as affected by cropping systems. Biol Fertil Soils 31:200–210CrossRefGoogle Scholar
  174. Navarrete M, Bail ML (2007) SALADPLAN: a model of the decision-making process in lettuce and endive cropping. Agron Sustain Dev 27(3):209–221CrossRefGoogle Scholar
  175. Nemecek T et al (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393CrossRefGoogle Scholar
  176. Nevo A, Amir I (1991) CROPLOT—an expert system for determining the suitability of crops to plots. Agric Syst 37(3):225–241CrossRefGoogle Scholar
  177. Niggli U, Fließbach A, Stolze M, Sanders J, Schader C, Wyss G, Balmer O, Pfiffner L, Wyss E (2008) Gesellschaftliche Leistungen der Biologischen Landwirtschaft, Frick. Forschungsinstitut für Biologischen Landbau (FiBL)Google Scholar
  178. Obi ME (1999) The physical and chemical responses of a degraded sandy clay loam soil to cover crops in southern Nigeria. Plant Soil 211:165–172CrossRefGoogle Scholar
  179. Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138(4):574–583CrossRefGoogle Scholar
  180. Oelhaf RC (1978) Organic agriculture: economic and ecological comparisons with conventional methods. Allanheld, Montclair. http://ideas.repec.org/a/eee/jfpoli/v6y1981i3p207-208.html Google Scholar
  181. Ogindo HO, Walker S (2005) Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping in semi-arid region in South Africa. Phys Chem Earth 30:799–808CrossRefGoogle Scholar
  182. Orr D (2009) Biological control and integrated pest management. In: Integrated pest management: innovation-development process, vol I, 1st edn. Springer, Dordrecht, pp 207–239CrossRefGoogle Scholar
  183. Oxford University (2016) Study lays out effects of climate change on food production and health. March 3, 2016. http://www.ox.ac.uk/news/2016-03-03-study-lays-out-effects-climate-change-food-production-and-health
  184. Padilla FM, Pugnaire FI (2006) The role of nurse plants in restoration of degraded environments. Front Ecol Environ 4:196–202CrossRefGoogle Scholar
  185. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San DiegoGoogle Scholar
  186. Peoples MB et al (2009a) The contributions of N-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17CrossRefGoogle Scholar
  187. Peoples MB, Unkovich MJ, Herridge DF (2009b) Measuring symbiotic N fixation by legumes. N fixation in crop production. Agron Monogr 52:125–170Google Scholar
  188. Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res 72:181–192CrossRefGoogle Scholar
  189. Peyraud JL, Le Gall A, Lüscher A (2009) Potential food production from forage legume based-systems in Europe: an overview. Irish J Agric Food Res 48:115–135Google Scholar
  190. Phelan PL, Mason JF, Stinner BR (1995) Soil fertility management and host preference by European corn borer, Ostrinai nubilalis (Hübner), on Zea mays L.: a comparison of organic and conventional farming. Agric Ecosyst Environ 56:1–8CrossRefGoogle Scholar
  191. Pierce FJ, Rice CW (1988) Crop rotation and its impact on efficiency of water and N use. In: Hargrove WL (ed) Cropping strategies for efficient use of water and N, ASA special publication 15. ASA/CSSA/SSSA, Madison, pp 21–42Google Scholar
  192. Podgorska-Lesiak M, Sobkowicz P (2011) Prevention of pea lodging by intercropping barley with peas at different N fertilisation levels. Field Crop Res 149:95–104CrossRefGoogle Scholar
  193. Preissel S, Reckling M, Schläfke N, Zander P (2015) Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79CrossRefGoogle Scholar
  194. Qiao J, Yang L, Yan T, Xue F, Zhao D (2012) N fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric Ecosyst Environ 146:103–112CrossRefGoogle Scholar
  195. Raich JW, Potter CS (1995) Global patterns of C dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36CrossRefGoogle Scholar
  196. Raimbault BA, Vyn TJ (1991) Crop-rotation and tillage effects on corn growth and soil structural stability. Agron J 83:979–985CrossRefGoogle Scholar
  197. Rana SS, Rana MC (2011) Cropping system. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, p 80Google Scholar
  198. Rasmunssen J, Eriksen J, Jensen ES, Esbensen KH, Høgh-Jensen H (2007) In situ carbon and N dynamics in rye-grass clover mixtures: transfers, deposition and leaching. Soil Biol Biochem 39:804–815CrossRefGoogle Scholar
  199. Rayns F, Jackson L, Lennartsson M, Rahn C (2000) Winter cover crops; their relevance for organic horticultural production. In: Proceedings 13th international IFOAM scientific conference, pp 199Google Scholar
  200. Reckling M, Hecker JM, Schläfke N, Bachinger J, Zander P, Bergkvist G, Walker R, Maire J, Eory V, Topp CFA, Rees RA, Toncea I, Pristeri A, Stoddard FL (2014) Agronomic analysis of cropping strategies for each agroclimatic region. Legume Futur Rep 1(4):75Google Scholar
  201. Reckling M, Hecker JM, Bachinger J, Schläfke N, Topp K, Watson C, Zander P (2012) Assessing the economic and agronomic potential of legume-supported crop rotations across Europe using a crop rotation generator. ESA12, Helsinki, Finland, pp 140–141Google Scholar
  202. Reddy PP (2016) Sustainable intensification of crop production. Springer.. ISBN: 978-981-10-2704-2 (Book), Singapore.  https://doi.org/10.1007/978-981-10-2704-2 CrossRefGoogle Scholar
  203. Reents HJ, Möller K (1999) Strategies to avoid nitrate leaching after potato crops by applying different cultivation methods to the following grown cereals. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Proceeding: designing and testing crop rotations for organic farming. DARCOF, TjeleGoogle Scholar
  204. Robson MC, Fowler SM, Lampkin NH, Leifert C, Leitch M, Robinson D, Watson CA, Litterick AM (2002) The agronomic and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv Agron 77:369–427CrossRefGoogle Scholar
  205. Rochester IJ, Peoples MB, Hulugalle NR, Gault RR, Constable GA (2001) Using legumes to enhance N fertility and improve soil conditions in cotton cropping systems. Field Crop Res 70:27–41CrossRefGoogle Scholar
  206. Rockström J, Steffen W, Noone K, Persson A et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32CrossRefGoogle Scholar
  207. Rodríguez-Kábana R, Robertson DG, Wells L, Weaver CF, King PS (1991) Cotton as a rotation crop for the management of Meloidogyne arenaria and Sclerotium rolfsii in peanut. Suppl J Nematol 23:652–657Google Scholar
  208. Russell AE, Laird DA, Parkin TB, Mallarino AP (2005) Impact of N fertilization and cropping system on C sequestration in Midwestern mollisols. Soil Sci Soc Am J 69:413–422CrossRefGoogle Scholar
  209. Sampson RN, Scholes RJ (2000) Article 3.4: additional human-induced activities. In: Watson RT et al (eds) Land use, land-use change, and forestry: a special report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 181–281Google Scholar
  210. Sánchez-Girón V, Serrano A, Hernanz JL, Navarrete L (2004) Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. Soil Tillage Res 78:35–44CrossRefGoogle Scholar
  211. Sanginga N, Lyasse O, Singh BB (2000) Phosphorus use efficiency and N balance of cowpea breeding lines in a low P soil of the derived savanna zone of West Africa. Plant Soil 220:119–128CrossRefGoogle Scholar
  212. Schäfer BC (2013) Mit Fruchtfolgen Witterungsrisiken trotzen! Praxis 1:5–7Google Scholar
  213. Sekamatte BM, Ogenga-Latigo M, Russell-Smith A (2003) Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Prot 22:87–93CrossRefGoogle Scholar
  214. Seran TH, Brintha I (2010) Review on maize based intercropping. J Agron 9(3):135–145CrossRefGoogle Scholar
  215. Seymour M, Kirkegaard JA, Peoples MB, White PF, French RJ (2012) Break-crop benefits to wheat in Western Australia—insights from over three decades of research. Crop Pasture Sci 63:1–16CrossRefGoogle Scholar
  216. Siddique KHM, Johansen C, Turner NC, Jeuffroy MH, Hashem A, Sakar D, Gan Y, Alghamdi SS (2012) Innovations in agronomy for food legumes – a review. Agron Sustain Dev 32:45–64CrossRefGoogle Scholar
  217. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519Google Scholar
  218. Sjursen H (2001) Change of the weed seed bank during the first complete six-course crop rotation after conversion from conventional to organic farming. Biol Agric Hortic 19:71–90CrossRefGoogle Scholar
  219. Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Dekker, New York, pp 357–396Google Scholar
  220. Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104CrossRefGoogle Scholar
  221. Soderstrom B, Baath E, Lundgren B (1983) Decrease in soil microbial activity and biomasses owing to N amendments. Can J Microbiol 29:1500–1506CrossRefGoogle Scholar
  222. Sosnoski LM, Cardina J (2006) Weed seed bank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci 54:263–273CrossRefGoogle Scholar
  223. Squire GR, Rodgers S, Wright G (2000) Community-scale seed bank response to less intense rotation and reduced herbicide input at three sites. Ann Appl Biol 136:47–57CrossRefGoogle Scholar
  224. Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2.  https://doi.org/10.1186/s40538-016-0085-1 CrossRefGoogle Scholar
  225. Stevenson FC, van Kessel C (1997) N contribution of pea residue in a hummocky terrain. Soil Sci Soc Am J 61:494–503CrossRefGoogle Scholar
  226. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365CrossRefGoogle Scholar
  227. Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM, MacDonald DW, Padel S, Tattersall FH, Wolfe MS, Watson CA (2001) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–327CrossRefGoogle Scholar
  228. Stocking M, Murnaghan N (2001) Hand book for the field assessment of land degradation. FAO, RomeGoogle Scholar
  229. Stoop WA, Staveren JPV (1981) Effects of cowpea in cereal rotations on subsequent crop yields under semi-arid conditions in Upper Volta. In: Graham PC, Harris SC (eds) Biological N fi xation technology for tropical agriculture. Centro International de Agricultura Tropical (CIAT), Cali, pp 653–657Google Scholar
  230. Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28:397–401CrossRefGoogle Scholar
  231. Teasdale JR (2007) Strategies for soil conservation in no-tillage and organic farming systems. J Soil Water Conserv 62:144A–147AGoogle Scholar
  232. Temba MC, Njobeh PB, Adebo OA, Olugbile AO, Kayitesi E (2016) The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. Int J Food Sci Technol 51:543–554CrossRefGoogle Scholar
  233. Tharanathan RN, Mahadevamma S (2003) Grain legumes—a boon to human nutrition. Trends Food Sci Technol 14:507–518CrossRefGoogle Scholar
  234. Thayamini H, Seran TH, Brintha I (2010) Review on maize based intercropping. J Agron 9:135–145CrossRefGoogle Scholar
  235. Thorup-Kristensen K (2001) Root growth and soil N depletion by onion, lettuce, early cabbage and carrot. In: Rahn CR, Lillywhite RD, De Neve S, Fink M, Ramos C (eds) Acta Horticultura, vol 563, pp 201–205Google Scholar
  236. Tian G, Kolawole GO, Kang BT, Kirchhof G (2000) N fertilizer placement indexes of legume cover crops in the derived savanna of West Africa. Plant Soil 224:287–296CrossRefGoogle Scholar
  237. Tilman D (1998) The greening of the green revolution. Nature 396:211–212CrossRefGoogle Scholar
  238. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000CrossRefGoogle Scholar
  239. Tsakiris G, Spiliotis M (2006) Cropping pattern planning under water supply from multiple sources. Irrig Drain Syst 20(1):57–68CrossRefGoogle Scholar
  240. UKROFS (2001) UKROFS standards for organic food production. UKROFS, LondonGoogle Scholar
  241. Unger PW, McCalla TM (1980) Conservation tillage systems. Adv Agron 33:1–58CrossRefGoogle Scholar
  242. Utomo VH, Sitompul SM, Noordwijk MV (1992) Effects of leguminous cover crops on subsequent maize and soybean crop son an ultisol in Lampang. Agriculture 15:44–53Google Scholar
  243. Van Emden HF (1991) Pest control, vol II, 2nd edn. Cambridge University Press, Cambridge, pp 1–128Google Scholar
  244. Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67(1):1–22CrossRefGoogle Scholar
  245. Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system of Vindhyan Region, India. Int J Chem Stud 5(4):1558–1560Google Scholar
  246. Verdú AM, Mas MT (2007) Mulching as an alternative technique for weed management in mandarin orchard tree rows. Agron Sustain Dev 27:367–375CrossRefGoogle Scholar
  247. Verma JP, Meena VS, Kumar A, Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794CrossRefGoogle Scholar
  248. Verma RK, Shekhawat GS (1991) Effect crop rotation and chemical soil treatment on bacterial on bacterial wilt of potato. Indian Phytopathol 449:5–8Google Scholar
  249. Vitousek PM, Naylor R, Crews T et al (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520CrossRefGoogle Scholar
  250. Voisin AS, Guéguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM, Mougel C, Pellerin S, Pelzer E (2014) Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron Sustain Dev 34:361–380CrossRefGoogle Scholar
  251. Von Richthofen JS, Pahl H, Nemecek T (2006) Economic interest of grain legumes in European crop rotations. Deliverable 3.2 GL-Pro. 58 ppGoogle Scholar
  252. Wander MM, Traina SJ, Stinner BR, Peters SE (1994) The effects of organic and conventional management on biologically-active soil organic matter pools. Soil Sci Soc Am J 58:1130–1139CrossRefGoogle Scholar
  253. Watson CA, Bengtsson H, Løes A-K, Myrbeck A, Salomon E, Schroder J, Stockdale EA (2002) A review of farm-scale nutrient budgets for organic farms in temperate regions. Soil Use Manag 18(s1):264–273CrossRefGoogle Scholar
  254. Watson CA, Ritz K, Younie D, Franklin M (1996) N and soil biomass dynamics in two crop rotations. Asp Appl Biol 47:43–50Google Scholar
  255. Weber G (1996) Legume-based technologies for African savannas: challenges for research and development. Biol Agric Hortic 13:309–333CrossRefGoogle Scholar
  256. Wedin DA, Tilman D (1990) Species effects on N cycling: a test with perennial grasses. Oecologia 84:433–441CrossRefGoogle Scholar
  257. Weinhold AR (1977) Population of Rhizoctonia solani in agricultural soils determined by a screening process. Phytopathology 67:566–569CrossRefGoogle Scholar
  258. Weitbrecht B, Pahl H (2000) Lohnt sich der Anbau von Körnerleguminosen? Ökologie Landbau 116:39–41Google Scholar
  259. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946CrossRefGoogle Scholar
  260. Westhoek H, Rood T, van den Berg M, Janse J, Nijdam D, Reudink M, Stehfest E (2011) The protein puzzle. In: The consumption and production of meat, dairy and fish in the European Union. Netherlands Environmental Assessment Agency (PBL), The HagueGoogle Scholar
  261. Wyland LJ, Jackson LE, Schulbach KF (1995) Soil-plant N dynamics following incorporation of a mature ryegrass cover crop in a lettuce production system. J Agric Sci 124:17–25CrossRefGoogle Scholar
  262. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar
  263. Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das Layek J, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158: 29–37CrossRefGoogle Scholar
  264. Yadav K, Akhtar MS, Panwar J (2015) Rhizospheric plant microbe interactions: key factor to soil fertility and plant nutrition. In: Arora NK (ed) Plant microbe symbiosis: applied facets. Springer, New Delhi, pp 127–145Google Scholar
  265. Yang L, Wang D, Xia L (2004) Characteristics and control approach on agricultural non-point source pollution in Taihu Lake region (in Chinese). China Water Resour 20:29–30Google Scholar
  266. Zentner RP, Wall DD, Nagy CN, Smith EG, Young DL, Miller PR, Campbell CA, McConkey BG, Brandt SA, Lafond GP, Johnston AM, Derksen DA (2002) Economics of crop diversification and soil tillage opportunities in the Canadian prairies. Agron J 94:216–230CrossRefGoogle Scholar
  267. Zinati GM, Li YC, Bryan HH (2001) Utilization of compost increases organic C and its humin, humic, and fulvic acid fractions in calcareous soil. Compost Sci Util 9:156–162CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • Ram Swaroop Meena
    • 2
    Email author
  • Rahul Datta
    • 3
  • Sunil Kumar Verma
    • 2
  • Gulab Singh Yadav
    • 4
  • Gourisankar Pradhan
    • 2
  • Ali Molaei
    • 5
  • G. K. M. Mustafizur Rahman
    • 6
  • H. A. Mashuk
    • 6
  1. 1.Department of AgronomyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Department of AgronomyInstitute of Agricultural Sciences (BHU)VaranasiIndia
  3. 3.Department of Geology and PedologyMendel University in BrnoBrnoCzech Republic
  4. 4.Division of Crop ProductionICAR Research Complex for NEH RegionLembucherraIndia
  5. 5.Department of Soil Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  6. 6.Department of Soil ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)GazipurBangladesh

Personalised recommendations